File size: 16,217 Bytes
ad54230 17fefdf d57671f 6106901 17fefdf 99e3272 5790f4d 6106901 ad54230 17fefdf 40a8479 7b369e3 99e3272 5a0ce35 99e3272 17fefdf e3c685d b9d457f e3c685d 8d64e83 e3c685d a69b553 ff76d43 8d64e83 e3c685d 8d64e83 e3c685d 17fefdf a3e54d7 17fefdf e3c685d 17fefdf a5777af 17fefdf 1410f09 17fefdf a5777af 17fefdf 8497b1e 0aeb810 17fefdf a5777af 17fefdf d9c3ee2 17fefdf 93be32c 17fefdf 453dc0c 17fefdf 453dc0c 17fefdf 1ae91ba 8d64e83 911ad65 8d64e83 17fefdf 8d64e83 17fefdf a5777af 517509a a8869b0 7b369e3 517509a 6042697 a8869b0 517509a 2f1e02f 911ad65 2f1e02f 911ad65 2f1e02f 8d64e83 1410f09 8d64e83 911ad65 8d64e83 0c9db5b 8d64e83 911ad65 2f1e02f a5777af f0ef275 1410f09 17fefdf 0252f66 17fefdf b8de216 a3e54d7 b8de216 6106901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
---
language:
- en
- de
license: apache-2.0
library_name: transformers
tags:
- mistral
- finetune
- chatml
- augmentation
- german
- merge
pipeline_tag: text-generation
model-index:
- name: SauerkrautLM-7b-HerO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.23
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.22
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-7b-HerO
name: Open LLM Leaderboard
---
![SauerkrautLM](https://vago-solutions.de/wp-content/uploads/2023/11/hero.png "SauerkrautLM-7b-HerO")
## VAGO solutions SauerkrautLM-7b-HerO
Introducing **SauerkrautLM-7b-HerO** – the pinnacle of German language model technology!
Crafted through the **merging** of **[Teknium's OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)** and **[Open-Orca's Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)** and **uniquely fine-tuned with the Sauerkraut dataset.**
SauerkrautLM-7b-HerO represents a breakthrough in language modeling, achieving an optimal balance between extensive German data and essential international sources.
This ensures the model not only excels in understanding the nuances of the German language but also retains its global capabilities.
Harnessing the innovative power of the **gradient SLERP method from MergeKit**, we've achieved a groundbreaking fusion of two of the most best performing 7B models based on the Mistral framework.
This merge has allowed us to combine the best features of both models, creating an unparalleled synergy.
Coupled with the German Sauerkraut dataset, which consists of a mix of augmented and translated data, we have successfully taught the English-speaking merged model the intricacies of the German language.
This was achieved *without the typical loss of core competencies often associated with fine-tuning in another language of models previously trained mainly in English.*
Our approach ensures that the model retains its original strengths while acquiring a profound understanding of German, **setting a new benchmark in bilingual language model proficiency.**
# Table of Contents
1. [Overview of all Her0 models](#all-hero-models)
2. [Model Details](#model-details)
- [Prompt template](#prompt-template)
- [Training Dataset](#training-dataset)
- [Merge Procedure](#merge-procedure)
3. [Evaluation](#evaluation)
- [GPT4ALL](#gpt4all)
- [Language Model evaluation Harness](#language-model-evaluation-harness)
- [BigBench](#big-bench)
- [MMLU](#mmlu)
- [TruthfulQA](#truthfulqa)
- [MT-Bench (German)](#mt-bench-german)
- [MT-Bench (English)](#mt-bench-english)
- [Additional German Benchmark results](#additional-german-benchmark-results)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)
## All HerO Models
| Model | HF | GPTQ | GGUF | AWQ |
|-------|-------|-------|-------|-------|
| SauerkrautLM-7b-HerO | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-7B-HerO-GPTQ) | [Link](https://huggingface.co/TheBloke/SauerkrautLM-7B-HerO-GGUF) |[Link](https://huggingface.co/TheBloke/SauerkrautLM-7B-HerO-AWQ) |
## Model Details
**SauerkrautLM-7b-HerO**
- **Model Type:** SauerkrautLM-7b-HerO is an auto-regressive language model based on the transformer architecture
- **Language(s):** English, German
- **License:** APACHE 2.0
- **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:[email protected])
### Training Dataset:
SauerkrautLM-7b-HerO was trained with mix of German data augmentation and translated data.
We found, that only a simple translation of training data can lead to unnatural German phrasings.
Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
### Merge Procedure:
SauerkrautLM-7b-HerO was merged on 1 A100 with [mergekit](https://github.com/cg123/mergekit).
The merged model contains [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca).
We applied the gradient SLERP method.
### Prompt Template:
```
<|im_start|>system
Du bist Sauerkraut-HerO, ein großes Sprachmodell, das höflich und kompetent antwortet. Schreibe deine Gedanken Schritt für Schritt auf, um Probleme sinnvoll zu lösen.<|im_end|>
<|im_start|>user
Wie geht es dir?<|im_end|>
<|im_start|>assistant
Mir geht es gut!<|im_end|>
<|im_start|>user
Bitte erkläre mir, wie die Zusammenführung von Modellen durch bestehende Spitzenmodelle profitieren kann.<|im_end|>
<|im_start|>assistant
```
## Evaluation
### GPT4ALL:
*Compared to relevant German Closed and Open Source models*
![GPT4ALL diagram](https://vago-solutions.de/wp-content/uploads/2023/11/GPT4All.png "SauerkrautLM-7b-HerO GPT4ALL Diagram")
![GPT4ALL table](https://vago-solutions.de/wp-content/uploads/2023/11/GPT4All-Tabelle.png "SauerkrautLM-7b-HerO GPT4ALL Table")
### Language Model evaluation Harness:
*Compared to Aleph Alpha Luminous Models*
![Harness](https://vago-solutions.de/wp-content/uploads/2023/11/Luminous-comparison.png "SauerkrautLM-7b-HerO Harness")
**performed with newest Language Model Evaluation Harness*
### Big Bench:
![BBH](https://vago-solutions.de/wp-content/uploads/2023/11/BigBench.png "SauerkrautLM-7b-HerO BBH")
**performed with newest Language Model Evaluation Harness*
### MMLU:
*Compared to Big Boy LLMs (Grok0,Grok1,GPT3.5,GPT4)*
![MMLU](https://vago-solutions.de/wp-content/uploads/2023/11/MMLU-Benchmark.png "SauerkrautLM-7b-HerO MMLU")
### TruthfulQA:
*Compared to OpenAI Models (GPT3.5,GPT4)*
![TruthfulQA](https://vago-solutions.de/wp-content/uploads/2023/11/Truthfulqa-Benchmark.png "SauerkrautLM-7b-HerO TruthfulQA")
### MT-Bench (German):
![MT-Bench German Diagram](https://vago-solutions.de/wp-content/uploads/2023/11/MT-Bench-German.png "SauerkrautLM-7b-HerO MT-Bench German Diagram")
```
########## First turn ##########
score
model turn
SauerkrautLM-70b-v1 1 7.25000
SauerkrautLM-7b-HerO <--- 1 6.96875
SauerkrautLM-7b-v1-mistral 1 6.30625
leo-hessianai-13b-chat 1 6.18750
SauerkrautLM-13b-v1 1 6.16250
leo-mistral-hessianai-7b-chat 1 6.15625
Llama-2-70b-chat-hf 1 6.03750
vicuna-13b-v1.5 1 5.80000
SauerkrautLM-7b-v1 1 5.65000
leo-hessianai-7b-chat 1 5.52500
vicuna-7b-v1.5 1 5.42500
Mistral-7B-v0.1 1 5.37500
SauerkrautLM-3b-v1 1 3.17500
Llama-2-7b 1 1.28750
open_llama_3b_v2 1 1.68750
########## Second turn ##########
score
model turn
SauerkrautLM-70b-v1 2 6.83125
SauerkrautLM-7b-HerO <--- 2 6.30625
vicuna-13b-v1.5 2 5.63125
SauerkrautLM-13b-v1 2 5.34375
SauerkrautLM-7b-v1-mistral 2 5.26250
leo-mistral-hessianai-7b-chat 2 4.99375
SauerkrautLM-7b-v1 2 4.73750
leo-hessianai-13b-chat 2 4.71250
vicuna-7b-v1.5 2 4.67500
Llama-2-70b-chat-hf 2 4.66250
Mistral-7B-v0.1 2 4.53750
leo-hessianai-7b-chat 2 2.65000
SauerkrautLM-3b-v1 2 1.98750
open_llama_3b_v2 2 1.22500
Llama-2-7b 2 1.07500
########## Average ##########
score
model
SauerkrautLM-70b-v1 7.040625
SauerkrautLM-7b-HerO <--- 6.637500
SauerkrautLM-7b-v1-mistral 5.784375
SauerkrautLM-13b-v1 5.753125
vicuna-13b-v1.5 5.715625
leo-mistral-hessianai-7b-chat 5.575000
leo-hessianai-13b-chat 5.450000
Llama-2-70b-chat-hf 5.350000
SauerkrautLM-v1-7b 5.193750
vicuna-7b-v1.5 5.050000
Mistral-7B-v0.1 4.956250
leo-hessianai-7b-chat 4.087500
SauerkrautLM-3b-v1 2.581250
open_llama_3b_v2 1.456250
Llama-2-7b 1.181250
```
**performed with the newest FastChat Version*
### MT-Bench (English):
![MT-Bench English Diagram](https://vago-solutions.de/wp-content/uploads/2023/11/MT-Bench-English.png "SauerkrautLM-7b-HerO MT-Bench English Diagram")
```
########## First turn ##########
score
model turn
OpenHermes-2.5-Mistral-7B 1 8.21875
SauerkrautLM-7b-HerO <--- 1 8.03125
Mistral-7B-OpenOrca 1 7.65625
neural-chat-7b-v3-1 1 7.22500
########## Second turn ##########
score
model turn
OpenHermes-2.5-Mistral-7B 2 7.1000
SauerkrautLM-7b-HerO <--- 2 6.7875
neural-chat-7b-v3-1 2 6.4000
Mistral-7B-OpenOrca 2 6.1750
########## Average ##########
score
model
OpenHermes-2.5-Mistral-7B 7.659375
SauerkrautLM-7b-HerO <--- 7.409375
Mistral-7B-OpenOrca 6.915625
neural-chat-7b-v3-1 6.812500
```
**performed with the newest FastChat Version*
### Additional German Benchmark results:
![GermanBenchmarks](https://vago-solutions.de/wp-content/uploads/2023/11/German-benchmarks.png "SauerkrautLM-7b-HerO German Benchmarks")
*performed with newest Language Model Evaluation Harness
## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. These models may be employed for commercial purposes, and the Apache 2.0 remains applicable and is included with the model files.
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:[email protected]). We are also grateful for your feedback and suggestions.
## Collaborations
We are also keenly seeking support and investment for our startup, VAGO solutions, where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
## Acknowledgement
Many thanks to [OpenOrca](https://huggingface.co/Open-Orca) and [teknium](https://huggingface.co/teknium) for providing such valuable models to the Open-Source community.
Many thanks to [TheBloke](https://huggingface.co/TheBloke) for super fast quantifying all of our models.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VAGOsolutions__SauerkrautLM-7b-HerO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.49|
|AI2 Reasoning Challenge (25-Shot)|63.23|
|HellaSwag (10-Shot) |83.52|
|MMLU (5-Shot) |63.30|
|TruthfulQA (0-shot) |49.22|
|Winogrande (5-shot) |78.37|
|GSM8k (5-shot) |49.28|
|