Built with Axolotl

See axolotl config

axolotl version: 0.4.1

accelerate_config:
  dynamo_backend: inductor
  mixed_precision: fp16
  num_machines: 1
  num_processes: auto
  use_cpu: false
adapter: lora
base_model: unsloth/SmolLM2-1.7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 67847b118f37f5b0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/67847b118f37f5b0_train_data.json
  type:
    field_input: context_original
    field_instruction: question
    field_output: answer_original
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: VERSIL91/b579a441-a51c-4ef7-8196-0b2dd3b7a5f0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
  0: 70GiB
  1: 70GiB
  2: 70GiB
  3: 70GiB
  4: 70GiB
  5: 70GiB
  6: 70GiB
  7: 70GiB
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: /tmp/67847b118f37f5b0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
  llm_int8_enable_fp32_cpu_offload: true
  load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b579a441-a51c-4ef7-8196-0b2dd3b7a5f0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b579a441-a51c-4ef7-8196-0b2dd3b7a5f0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

b579a441-a51c-4ef7-8196-0b2dd3b7a5f0

This model is a fine-tuned version of unsloth/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 20

Training results

Training Loss Epoch Step Validation Loss
3346.0093 0.0142 1 nan
3671.7151 0.0712 5 nan
441.9196 0.1423 10 nan
591.5734 0.2135 15 nan
1692.3673 0.2847 20 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
14
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for VERSIL91/b579a441-a51c-4ef7-8196-0b2dd3b7a5f0

Adapter
(314)
this model