my_model / README.md
Val123val's picture
End of training
782c956
metadata
language:
  - ru
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - bond005/sberdevices_golos_10h_crowd
metrics:
  - wer
model-index:
  - name: my_model - Val123val
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sberdevices_golos_10h_crowd
          type: bond005/sberdevices_golos_10h_crowd
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 42.241139818232334

my_model - Val123val

This model is a fine-tuned version of openai/whisper-small on the Sberdevices_golos_10h_crowd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1761
  • Wer: 42.2411

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1521 0.91 500 0.1824 29.3408
0.0824 1.82 1000 0.1702 27.5291
0.0304 2.73 1500 0.1726 45.1046
0.0114 3.64 2000 0.1704 40.1238
0.0039 4.55 2500 0.1692 32.1903
0.0013 5.45 3000 0.1704 34.0298
0.0029 6.36 3500 0.1712 39.8976
0.0007 7.27 4000 0.1738 39.4273
0.0006 8.18 4500 0.1755 41.0664
0.0005 9.09 5000 0.1761 42.2411

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cpu
  • Datasets 2.16.0
  • Tokenizers 0.15.0