{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd07af9fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd07af9feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd07af9ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd07afac040>", "_build": "<function ActorCriticPolicy._build at 0x7cd07afac0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7cd07afac160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd07afac1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd07afac280>", "_predict": "<function ActorCriticPolicy._predict at 0x7cd07afac310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd07afac3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd07afac430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd07afac4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cd07b143700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717753704111953339, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALb7hT7acQk//P8nvoSUmr7RXyo9CSgXvQAAAAAAAAAAJg2APXHeJT8dRfi9nE92vuKhPrwmUAO9AAAAAAAAAAAzvfe8e4CMuhN5zzm/L4k2GlMXOxrO7rgAAIA/AACAPw1Fvb0pOFe6dHSVuuCmJbYJlz87T/irOQAAgD8AAIA/Gv+OPRSgkboGyyy6KxontLi1tToFUkg5AACAPwAAgD9NXJw97EmXuU1mjrliT/MzsPFmuyFLqDgAAIA/AACAP9pG073fOzQ+8kGEPa3MS74lTjo9yjdZvQAAAAAAAAAAGu9SveH4nbqL2dc6nlSyNSl/Nbpdifi5AACAPwAAgD8zjZq9rvGguhZMUjr1EUo1CK6pOGr1cbkAAAAAAACAP428J76PAkq4wXGrO1EbkzeBtQW8O2sguQAAgD8AAIA/0FxlvqcnJj8mfhQ+YDdTvozOGz1WR/27AAAAAAAAAACACoi9/YUNPgyRrz1d80K+m0X7Ohlru7wAAAAAAAAAAABw2DuPNkm6VX2DOZsAkzRLerA5guSauAAAgD8AAIA/usEwPvv9grwCzYw74NTFufdW7r2MU7m6AACAPwAAgD8KOFW+L6gzP8xahT2bXYW+aeGzO7KGkzsAAAAAAAAAADM2kr24boO51T3hOku1mzXGXhu72aoEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRVeFUQ042MAWyUTegDjAF0lEdAk7VgB5ooNXV9lChoBkdAcIq4fwI+n2gHTdIBaAhHQJO+Sp0fYBh1fZQoaAZHQGNidkrf+CNoB03oA2gIR0CTwR1Z1V5sdX2UKGgGR0Bl8aTyJ9ApaAdN6ANoCEdAk8QSuEEkjXV9lChoBkdAZFl71Iy0r2gHTegDaAhHQJPQaFdszl91fZQoaAZHQGRwkFOfukVoB03oA2gIR0CT0R12aDwpdX2UKGgGR0Birxz1bqyGaAdN6ANoCEdAk9GAymALA3V9lChoBkdAYBtCojv/i2gHTegDaAhHQJPUv4tYjjd1fZQoaAZHQGMOCTt9hJBoB03oA2gIR0CT14VDrqt6dX2UKGgGR0Bk3jNMXaakaAdN6ANoCEdAk9qteyAxz3V9lChoBkdAZPbkKeCkGmgHTegDaAhHQJPhMsDnvDx1fZQoaAZHQBomDcuanaZoB00EAWgIR0CT6DTzundgdX2UKGgGR0BdQi2Dxsl+aAdN6ANoCEdAk+vmYnfEXXV9lChoBkdAXJ58kUsWf2gHTegDaAhHQJPwyad+Xqt1fZQoaAZHQGNU/0dzXBhoB03oA2gIR0CT8dAOavzOdX2UKGgGR8AGAT9KmKqGaAdNKQFoCEdAk/kE/B3zMHV9lChoBkdAYc/ukUKzA2gHTegDaAhHQJP5OzgMtsh1fZQoaAZHQGP5f8l5WzZoB03oA2gIR0CT+YJMg2ZRdX2UKGgGR0BgM8+s5n14aAdN6ANoCEdAk/mqlHjIaXV9lChoBkdAYhaRigCfYmgHTegDaAhHQJQS7cmBvrJ1fZQoaAZHQGIwgggX/HZoB03oA2gIR0CUFeTNdJJ5dX2UKGgGR0Br6a3d9Dx9aAdN9QJoCEdAlBYQxnFo+XV9lChoBkdAZkgONo8IRmgHTegDaAhHQJQYrfuTibV1fZQoaAZHQGPnkyDZlFtoB03oA2gIR0CUKFnq3VkMdX2UKGgGR0BlEJC0F8ohaAdN6ANoCEdAlCi+WjXWfHV9lChoBkdARLBTXJ5miGgHTRYBaAhHQJQtA20iQkp1fZQoaAZHQFumyAxzq8loB03oA2gIR0CULwSEDhcadX2UKGgGR0BojJV0cOslaAdN6ANoCEdAlDJ/crRSg3V9lChoBkdAYrKBMBZIQWgHTegDaAhHQJQ8J0GNaQp1fZQoaAZHQGGCC2c8TzxoB03oA2gIR0CUPpJokAxSdX2UKGgGR0Bj0NpVS4vwaAdN6ANoCEdAlEHjijtXxXV9lChoBkdAXCnv3JxNqWgHTegDaAhHQJRCulgtvn91fZQoaAZHQGCYpRO1v2poB03oA2gIR0CUSf5kK/mDdX2UKGgGR0BjT6ydFvycaAdN6ANoCEdAlEour6tT1nV9lChoBkdAZKt37DVH4GgHTegDaAhHQJRKeSlnAZd1fZQoaAZHQF5QKZ2IO6NoB03oA2gIR0CUSqdYnv2HdX2UKGgGR0BkiXI+4b0faAdN6ANoCEdAlGffFJg9eXV9lChoBkdAZPt1+RYA82gHTegDaAhHQJRq1bGFSKp1fZQoaAZHQGYkqBun/DNoB03oA2gIR0CUawHq/ub7dX2UKGgGR0BkznitJWeZaAdN6ANoCEdAlHt2xyGSIXV9lChoBkdAZi/kz41xbWgHTegDaAhHQJR74Gu9vjx1fZQoaAZHQGRXB9srNGFoB03oA2gIR0CUgEKaoddWdX2UKGgGR0BhhF8JD3M7aAdN6ANoCEdAlIKVNcnmaHV9lChoBkdAYqomlZX+2mgHTegDaAhHQJSHRAMUh3d1fZQoaAZHQF2VZmqYJE9oB03oA2gIR0CUkgKTB68hdX2UKGgGR0BfAUcXFcY7aAdN6ANoCEdAlJRYBJZntnV9lChoBkdAYuxKAavRq2gHTegDaAhHQJSXZO1v2oN1fZQoaAZHQGA+W2PT5O9oB03oA2gIR0CUmCAUL2HtdX2UKGgGR0Bk7jz06HTJaAdN6ANoCEdAlJ6MneBQN3V9lChoBkdAaHC8e0XxfGgHTegDaAhHQJSettLteD51fZQoaAZHQGDwFPi1iONoB03oA2gIR0CUnvs6aLGadX2UKGgGR0BcDiOaOPvKaAdN6ANoCEdAlJ8jA31jAnV9lChoBkdAY5Ndk8Rtg2gHTegDaAhHQJS5t0bLlmx1fZQoaAZHQGTv/ub7TDxoB03oA2gIR0CUvYHmRvFWdX2UKGgGR0Bkkx9w3o9taAdN6ANoCEdAlL3Eadc0L3V9lChoBkdAZwlY9xIatWgHTegDaAhHQJTN5xjriVB1fZQoaAZHQGKtGmtQsPJoB03oA2gIR0CUzkymygPFdX2UKGgGR0BibJSYPXkHaAdN6ANoCEdAlNJ4HLRrrXV9lChoBkdAYhXYI0IkaGgHTegDaAhHQJTUW0dBBzF1fZQoaAZHQGYxUvwmVqxoB03oA2gIR0CU15ktVaOhdX2UKGgGR0BmqJshxHXmaAdN6ANoCEdAlOD7AP/aQHV9lChoBkdAX7XV+Zw4sGgHTegDaAhHQJTjbv1DjR51fZQoaAZHQGMtt/OMVDdoB03oA2gIR0CU5qCj1wo9dX2UKGgGR0BhgVGy5Zr6aAdN6ANoCEdAlOdrv9cbBHV9lChoBkdAYiz0bLlmvmgHTegDaAhHQJTxLbN8ma91fZQoaAZHQGYZArYoRZloB03oA2gIR0CU8XtaIN3GdX2UKGgGR0BccsuWa+ewaAdN6ANoCEdAlPHsxTKkmHV9lChoBkdAZKH79hqj8GgHTegDaAhHQJTyKqyWzGB1fZQoaAZHQGDl4+bExZdoB03oA2gIR0CVDOtQsPJ8dX2UKGgGR0Be2Dc/MW43aAdN6ANoCEdAlRAiLdepoHV9lChoBkdAYbZ/xUedTmgHTegDaAhHQJUQUfq5byJ1fZQoaAZHQGVDWhysCDFoB03oA2gIR0CVIvjh1klNdX2UKGgGR0BkT+Mn7YTTaAdN6ANoCEdAlSOFPBSDRXV9lChoBkdAZkzWAf+0gWgHTegDaAhHQJUo25Xlr/N1fZQoaAZHQGGHWNm16VtoB03oA2gIR0CVKtwm3OObdX2UKGgGR0BkZcC/47A+aAdN6ANoCEdAlS5oZuQ6qHV9lChoBkdAZRvFCLMs6WgHTegDaAhHQJU4UQ5FPSF1fZQoaAZHQGJuCc5Ke05oB03oA2gIR0CVOsO32EkCdX2UKGgGR0BmzoiRnvlVaAdN6ANoCEdAlT3Beb/ff3V9lChoBkdAZe4TJQtSRGgHTegDaAhHQJU+iphnanJ1fZQoaAZHQGKeAhB7eEZoB03oA2gIR0CVRXFSsKb8dX2UKGgGR0Bm/wjv/io9aAdN6ANoCEdAlUWgsbvPT3V9lChoBkdAZEPqynk1dmgHTegDaAhHQJVF7CqIacZ1fZQoaAZHQGD0mdy1eBxoB03oA2gIR0CVRhcY64lQdX2UKGgGR0BmMFPznRsuaAdN6ANoCEdAlWKWFajesXV9lChoBkdAYLdD1oQFtGgHTegDaAhHQJVlr4mCyyF1fZQoaAZHQGCj0/fO2RdoB03oA2gIR0CVZeEGJN0vdX2UKGgGR0Blj5oysS00aAdN6ANoCEdAlXbeTNdJKHV9lChoBkdAZNgAU+LWJGgHTegDaAhHQJV3R40Mw111fZQoaAZHQGJVENvwVj9oB03oA2gIR0CVe67eVLSNdX2UKGgGR0Bobgl8gIQfaAdN6ANoCEdAlX2CXY150XV9lChoBkdAYLfTwUg0TGgHTegDaAhHQJWAuO938oB1fZQoaAZHQGN1krGza9NoB03oA2gIR0CVjJdEsrd4dX2UKGgGR0BkLaFK02LpaAdN6ANoCEdAlY8rS7Xg+HV9lChoBkdAX2PmyPdVN2gHTegDaAhHQJWSMK0D2al1fZQoaAZHQGQfeFtbcGloB03oA2gIR0CVku2Pkq+bdX2UKGgGR0BihQ/iYLLIaAdN6ANoCEdAlZnqUeMho3V9lChoBkdAYFLm+0w8GWgHTegDaAhHQJWaG8J2MbZ1fZQoaAZHQGMOQ/5ckdFoB03oA2gIR0CVmmRTS9dvdX2UKGgGR0BlHQK2KEWZaAdN6ANoCEdAlZqO/Yao/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |