distilhubert-tone-classification

This model is a fine-tuned version of ntu-spml/distilhubert on the CREMA-D dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1796
  • Accuracy: 0.6810
  • Precision: 0.6795
  • Recall: 0.6810
  • F1: 0.6750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3122 1.0 442 1.1656 0.5737 0.5887 0.5737 0.5679
1.0131 2.0 884 0.9625 0.6461 0.6572 0.6461 0.6399
0.7817 3.0 1326 1.0005 0.6381 0.6506 0.6381 0.6249
0.6087 4.0 1768 0.9428 0.6649 0.6572 0.6649 0.6515
0.4604 5.0 2210 1.0250 0.6622 0.6710 0.6622 0.6545
0.3164 6.0 2652 1.0814 0.6783 0.6821 0.6783 0.6656
0.2127 7.0 3094 1.1286 0.6971 0.6991 0.6971 0.6909
0.1224 8.0 3536 1.1796 0.6810 0.6795 0.6810 0.6750

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
32
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Venkatesh4342/distilhubert-tone-classification

Finetuned
(409)
this model

Dataset used to train Venkatesh4342/distilhubert-tone-classification

Evaluation results