distilhubert-tone-classification
This model is a fine-tuned version of ntu-spml/distilhubert on the CREMA-D dataset. It achieves the following results on the evaluation set:
- Loss: 1.1796
- Accuracy: 0.6810
- Precision: 0.6795
- Recall: 0.6810
- F1: 0.6750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.3122 | 1.0 | 442 | 1.1656 | 0.5737 | 0.5887 | 0.5737 | 0.5679 |
1.0131 | 2.0 | 884 | 0.9625 | 0.6461 | 0.6572 | 0.6461 | 0.6399 |
0.7817 | 3.0 | 1326 | 1.0005 | 0.6381 | 0.6506 | 0.6381 | 0.6249 |
0.6087 | 4.0 | 1768 | 0.9428 | 0.6649 | 0.6572 | 0.6649 | 0.6515 |
0.4604 | 5.0 | 2210 | 1.0250 | 0.6622 | 0.6710 | 0.6622 | 0.6545 |
0.3164 | 6.0 | 2652 | 1.0814 | 0.6783 | 0.6821 | 0.6783 | 0.6656 |
0.2127 | 7.0 | 3094 | 1.1286 | 0.6971 | 0.6991 | 0.6971 | 0.6909 |
0.1224 | 8.0 | 3536 | 1.1796 | 0.6810 | 0.6795 | 0.6810 | 0.6750 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 32
Model tree for Venkatesh4342/distilhubert-tone-classification
Base model
ntu-spml/distilhubertDataset used to train Venkatesh4342/distilhubert-tone-classification
Evaluation results
- Accuracy on CREMA-Dself-reported0.681
- Precision on CREMA-Dself-reported0.680
- Recall on CREMA-Dself-reported0.681
- F1 on CREMA-Dself-reported0.675