VicentCano's picture
End of training
3241abc verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: toki_pona_test_cogn_wav2vec2-xls-r-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: tok
          split: test
          args: tok
        metrics:
          - name: Wer
            type: wer
            value: 0.04568527918781726

toki_pona_test_cogn_wav2vec2-xls-r-300m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0718
  • Wer: 0.0457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.9966 147 2.6699 1.0
No log 2.0 295 0.6492 0.5195
No log 2.9966 442 0.1896 0.1911
2.6379 4.0 590 0.1464 0.1274
2.6379 4.9966 737 0.1177 0.1073
2.6379 6.0 885 0.1089 0.0935
0.1404 6.9966 1032 0.0978 0.0792
0.1404 8.0 1180 0.0957 0.0735
0.1404 8.9966 1327 0.0888 0.0697
0.1404 10.0 1475 0.0741 0.0584
0.0683 10.9966 1622 0.0710 0.0519
0.0683 12.0 1770 0.0687 0.0477
0.0683 12.9966 1917 0.0709 0.0458
0.0383 13.9525 2058 0.0718 0.0457

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3