Fine_Tuning_SC_Method_2_Epoch_13B
This model is a fine-tuned version of rafsankabir/Pretrained_E13B_Method2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4244
- Accuracy: 0.6873
- F1 Macro: 0.6544
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
---|---|---|---|---|---|
No log | 1.27 | 500 | 1.0673 | 0.3976 | 0.1896 |
1.0138 | 2.54 | 1000 | 0.8217 | 0.6331 | 0.5569 |
1.0138 | 3.82 | 1500 | 0.7889 | 0.6662 | 0.6049 |
0.7305 | 5.09 | 2000 | 0.7821 | 0.6765 | 0.6382 |
0.7305 | 6.36 | 2500 | 0.7867 | 0.6918 | 0.6457 |
0.5856 | 7.63 | 3000 | 0.8236 | 0.6892 | 0.6623 |
0.5856 | 8.91 | 3500 | 0.8490 | 0.6835 | 0.6551 |
0.4723 | 10.18 | 4000 | 0.9057 | 0.6854 | 0.6533 |
0.4723 | 11.45 | 4500 | 0.9237 | 0.6796 | 0.6455 |
0.3896 | 12.72 | 5000 | 0.9814 | 0.6879 | 0.6499 |
0.3896 | 13.99 | 5500 | 0.9984 | 0.6745 | 0.6487 |
0.3299 | 15.27 | 6000 | 1.0226 | 0.6822 | 0.6545 |
0.3299 | 16.54 | 6500 | 1.0579 | 0.6758 | 0.6485 |
0.2783 | 17.81 | 7000 | 1.0932 | 0.6796 | 0.6487 |
0.2783 | 19.08 | 7500 | 1.1047 | 0.6950 | 0.6609 |
0.2455 | 20.36 | 8000 | 1.1643 | 0.6860 | 0.6559 |
0.2455 | 21.63 | 8500 | 1.1953 | 0.6841 | 0.6548 |
0.2181 | 22.9 | 9000 | 1.2043 | 0.6835 | 0.6516 |
0.2181 | 24.17 | 9500 | 1.2603 | 0.6867 | 0.6502 |
0.1894 | 25.45 | 10000 | 1.2652 | 0.6860 | 0.6552 |
0.1894 | 26.72 | 10500 | 1.2860 | 0.6790 | 0.6474 |
0.1757 | 27.99 | 11000 | 1.2892 | 0.6854 | 0.6541 |
0.1757 | 29.26 | 11500 | 1.3400 | 0.6803 | 0.6496 |
0.1599 | 30.53 | 12000 | 1.3630 | 0.6828 | 0.6493 |
0.1599 | 31.81 | 12500 | 1.3688 | 0.6854 | 0.6538 |
0.1531 | 33.08 | 13000 | 1.3962 | 0.6854 | 0.6534 |
0.1531 | 34.35 | 13500 | 1.4021 | 0.6841 | 0.6523 |
0.1452 | 35.62 | 14000 | 1.4029 | 0.6847 | 0.6524 |
0.1452 | 36.9 | 14500 | 1.4130 | 0.6886 | 0.6562 |
0.1391 | 38.17 | 15000 | 1.4203 | 0.6879 | 0.6553 |
0.1391 | 39.44 | 15500 | 1.4244 | 0.6873 | 0.6544 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 184
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.