File size: 3,724 Bytes
a9322db
 
 
 
 
 
3b12d7c
a9322db
 
 
 
 
 
3b12d7c
a9322db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Fine_Tuning_SC_Method_2_Epoch_13B
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Fine_Tuning_SC_Method_2_Epoch_13B

This model is a fine-tuned version of [rafsankabir/Pretrained_E13B_Method2](https://huggingface.co/rafsankabir/Pretrained_E13B_Method2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4244
- Accuracy: 0.6873
- F1 Macro: 0.6544

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| No log        | 1.27  | 500   | 1.0673          | 0.3976   | 0.1896   |
| 1.0138        | 2.54  | 1000  | 0.8217          | 0.6331   | 0.5569   |
| 1.0138        | 3.82  | 1500  | 0.7889          | 0.6662   | 0.6049   |
| 0.7305        | 5.09  | 2000  | 0.7821          | 0.6765   | 0.6382   |
| 0.7305        | 6.36  | 2500  | 0.7867          | 0.6918   | 0.6457   |
| 0.5856        | 7.63  | 3000  | 0.8236          | 0.6892   | 0.6623   |
| 0.5856        | 8.91  | 3500  | 0.8490          | 0.6835   | 0.6551   |
| 0.4723        | 10.18 | 4000  | 0.9057          | 0.6854   | 0.6533   |
| 0.4723        | 11.45 | 4500  | 0.9237          | 0.6796   | 0.6455   |
| 0.3896        | 12.72 | 5000  | 0.9814          | 0.6879   | 0.6499   |
| 0.3896        | 13.99 | 5500  | 0.9984          | 0.6745   | 0.6487   |
| 0.3299        | 15.27 | 6000  | 1.0226          | 0.6822   | 0.6545   |
| 0.3299        | 16.54 | 6500  | 1.0579          | 0.6758   | 0.6485   |
| 0.2783        | 17.81 | 7000  | 1.0932          | 0.6796   | 0.6487   |
| 0.2783        | 19.08 | 7500  | 1.1047          | 0.6950   | 0.6609   |
| 0.2455        | 20.36 | 8000  | 1.1643          | 0.6860   | 0.6559   |
| 0.2455        | 21.63 | 8500  | 1.1953          | 0.6841   | 0.6548   |
| 0.2181        | 22.9  | 9000  | 1.2043          | 0.6835   | 0.6516   |
| 0.2181        | 24.17 | 9500  | 1.2603          | 0.6867   | 0.6502   |
| 0.1894        | 25.45 | 10000 | 1.2652          | 0.6860   | 0.6552   |
| 0.1894        | 26.72 | 10500 | 1.2860          | 0.6790   | 0.6474   |
| 0.1757        | 27.99 | 11000 | 1.2892          | 0.6854   | 0.6541   |
| 0.1757        | 29.26 | 11500 | 1.3400          | 0.6803   | 0.6496   |
| 0.1599        | 30.53 | 12000 | 1.3630          | 0.6828   | 0.6493   |
| 0.1599        | 31.81 | 12500 | 1.3688          | 0.6854   | 0.6538   |
| 0.1531        | 33.08 | 13000 | 1.3962          | 0.6854   | 0.6534   |
| 0.1531        | 34.35 | 13500 | 1.4021          | 0.6841   | 0.6523   |
| 0.1452        | 35.62 | 14000 | 1.4029          | 0.6847   | 0.6524   |
| 0.1452        | 36.9  | 14500 | 1.4130          | 0.6886   | 0.6562   |
| 0.1391        | 38.17 | 15000 | 1.4203          | 0.6879   | 0.6553   |
| 0.1391        | 39.44 | 15500 | 1.4244          | 0.6873   | 0.6544   |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3