Method2_E13B_SC_BS4_LR3e5
This model is a fine-tuned version of rafsankabir/Pretrained_E13B_Method2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5641
- Accuracy: 0.6803
- F1 Macro: 0.6446
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
---|---|---|---|---|---|
No log | 0.16 | 500 | 1.0767 | 0.3976 | 0.1896 |
1.075 | 0.32 | 1000 | 1.0769 | 0.3976 | 0.1896 |
1.075 | 0.48 | 1500 | 1.0183 | 0.5539 | 0.4151 |
1.0246 | 0.64 | 2000 | 0.8956 | 0.5916 | 0.4745 |
1.0246 | 0.8 | 2500 | 0.8743 | 0.6082 | 0.5120 |
0.8948 | 0.95 | 3000 | 0.8365 | 0.6216 | 0.5546 |
0.8948 | 1.11 | 3500 | 0.8635 | 0.6311 | 0.5752 |
0.8069 | 1.27 | 4000 | 0.9060 | 0.6158 | 0.5398 |
0.8069 | 1.43 | 4500 | 0.8231 | 0.6388 | 0.5924 |
0.7969 | 1.59 | 5000 | 0.8368 | 0.6331 | 0.5935 |
0.7969 | 1.75 | 5500 | 0.8262 | 0.6477 | 0.5981 |
0.7804 | 1.91 | 6000 | 0.8299 | 0.6579 | 0.6208 |
0.7804 | 2.07 | 6500 | 0.8197 | 0.6579 | 0.6364 |
0.715 | 2.23 | 7000 | 0.8498 | 0.6624 | 0.5955 |
0.715 | 2.39 | 7500 | 0.8357 | 0.6669 | 0.6218 |
0.6953 | 2.54 | 8000 | 0.8438 | 0.6560 | 0.6269 |
0.6953 | 2.7 | 8500 | 0.8528 | 0.6669 | 0.6022 |
0.7074 | 2.86 | 9000 | 0.8009 | 0.6745 | 0.6457 |
0.7074 | 3.02 | 9500 | 0.8222 | 0.6720 | 0.6402 |
0.6598 | 3.18 | 10000 | 0.9347 | 0.6650 | 0.6062 |
0.6598 | 3.34 | 10500 | 0.9053 | 0.6803 | 0.6510 |
0.6634 | 3.5 | 11000 | 0.8902 | 0.6720 | 0.6434 |
0.6634 | 3.66 | 11500 | 0.9370 | 0.6733 | 0.6415 |
0.6182 | 3.82 | 12000 | 0.8914 | 0.6745 | 0.6519 |
0.6182 | 3.98 | 12500 | 0.8938 | 0.6752 | 0.6389 |
0.6043 | 4.13 | 13000 | 1.0143 | 0.6745 | 0.6413 |
0.6043 | 4.29 | 13500 | 1.0768 | 0.6765 | 0.6543 |
0.587 | 4.45 | 14000 | 1.1154 | 0.6790 | 0.6421 |
0.587 | 4.61 | 14500 | 1.1295 | 0.6828 | 0.6525 |
0.6345 | 4.77 | 15000 | 1.1210 | 0.6822 | 0.6390 |
0.6345 | 4.93 | 15500 | 1.0062 | 0.6726 | 0.6380 |
0.6 | 5.09 | 16000 | 1.1504 | 0.6739 | 0.6369 |
0.6 | 5.25 | 16500 | 1.3298 | 0.6733 | 0.6280 |
0.5667 | 5.41 | 17000 | 1.2751 | 0.6662 | 0.6308 |
0.5667 | 5.57 | 17500 | 1.4070 | 0.6567 | 0.6069 |
0.614 | 5.73 | 18000 | 1.2956 | 0.6694 | 0.6284 |
0.614 | 5.88 | 18500 | 1.2795 | 0.6822 | 0.6382 |
0.5651 | 6.04 | 19000 | 1.3021 | 0.6739 | 0.6478 |
0.5651 | 6.2 | 19500 | 1.4076 | 0.6682 | 0.6333 |
0.5347 | 6.36 | 20000 | 1.3917 | 0.6733 | 0.6344 |
0.5347 | 6.52 | 20500 | 1.4203 | 0.6790 | 0.6285 |
0.5278 | 6.68 | 21000 | 1.3340 | 0.6860 | 0.6628 |
0.5278 | 6.84 | 21500 | 1.3521 | 0.6873 | 0.6489 |
0.5796 | 7.0 | 22000 | 1.2835 | 0.6847 | 0.6567 |
0.5796 | 7.16 | 22500 | 1.4437 | 0.6879 | 0.6563 |
0.4627 | 7.32 | 23000 | 1.5052 | 0.6835 | 0.6435 |
0.4627 | 7.47 | 23500 | 1.4991 | 0.6707 | 0.6434 |
0.518 | 7.63 | 24000 | 1.5436 | 0.6656 | 0.6403 |
0.518 | 7.79 | 24500 | 1.5247 | 0.6784 | 0.6433 |
0.5373 | 7.95 | 25000 | 1.4743 | 0.6835 | 0.6537 |
0.5373 | 8.11 | 25500 | 1.5379 | 0.6777 | 0.6385 |
0.4539 | 8.27 | 26000 | 1.5548 | 0.6739 | 0.6393 |
0.4539 | 8.43 | 26500 | 1.6174 | 0.6669 | 0.6378 |
0.4519 | 8.59 | 27000 | 1.5949 | 0.6816 | 0.6504 |
0.4519 | 8.75 | 27500 | 1.5558 | 0.6816 | 0.6357 |
0.4813 | 8.91 | 28000 | 1.5826 | 0.6739 | 0.6553 |
0.4813 | 9.06 | 28500 | 1.5929 | 0.6867 | 0.6540 |
0.4121 | 9.22 | 29000 | 1.6260 | 0.6886 | 0.6545 |
0.4121 | 9.38 | 29500 | 1.5950 | 0.6841 | 0.6500 |
0.4451 | 9.54 | 30000 | 1.6146 | 0.6854 | 0.6481 |
0.4451 | 9.7 | 30500 | 1.6587 | 0.6796 | 0.6493 |
0.4039 | 9.86 | 31000 | 1.6173 | 0.6758 | 0.6400 |
0.4039 | 10.02 | 31500 | 1.5952 | 0.6803 | 0.6517 |
0.3921 | 10.18 | 32000 | 1.7298 | 0.6694 | 0.6413 |
0.3921 | 10.34 | 32500 | 1.7106 | 0.6796 | 0.6467 |
0.3799 | 10.5 | 33000 | 1.6695 | 0.6867 | 0.6505 |
0.3799 | 10.66 | 33500 | 1.6907 | 0.6803 | 0.6550 |
0.4003 | 10.81 | 34000 | 1.6811 | 0.6809 | 0.6413 |
0.4003 | 10.97 | 34500 | 1.6644 | 0.6771 | 0.6352 |
0.3812 | 11.13 | 35000 | 1.7371 | 0.6822 | 0.6386 |
0.3812 | 11.29 | 35500 | 1.7405 | 0.6841 | 0.6516 |
0.3399 | 11.45 | 36000 | 1.6981 | 0.6822 | 0.6503 |
0.3399 | 11.61 | 36500 | 1.6536 | 0.6847 | 0.6483 |
0.3653 | 11.77 | 37000 | 1.7461 | 0.6790 | 0.6475 |
0.3653 | 11.93 | 37500 | 1.7247 | 0.6790 | 0.6485 |
0.338 | 12.09 | 38000 | 1.7433 | 0.6905 | 0.6532 |
0.338 | 12.25 | 38500 | 1.7331 | 0.6765 | 0.6558 |
0.3302 | 12.4 | 39000 | 1.7603 | 0.6796 | 0.6456 |
0.3302 | 12.56 | 39500 | 1.7784 | 0.6726 | 0.6505 |
0.3195 | 12.72 | 40000 | 1.8032 | 0.6784 | 0.6469 |
0.3195 | 12.88 | 40500 | 1.7869 | 0.6822 | 0.6553 |
0.3508 | 13.04 | 41000 | 1.7761 | 0.6752 | 0.6506 |
0.3508 | 13.2 | 41500 | 1.7806 | 0.6847 | 0.6454 |
0.2915 | 13.36 | 42000 | 1.8542 | 0.6707 | 0.6528 |
0.2915 | 13.52 | 42500 | 1.8365 | 0.6796 | 0.6520 |
0.3023 | 13.68 | 43000 | 1.8563 | 0.6828 | 0.6524 |
0.3023 | 13.84 | 43500 | 1.7947 | 0.6752 | 0.6495 |
0.3213 | 13.99 | 44000 | 1.8130 | 0.6796 | 0.6546 |
0.3213 | 14.15 | 44500 | 1.8288 | 0.6841 | 0.6502 |
0.2644 | 14.31 | 45000 | 1.8140 | 0.6726 | 0.6453 |
0.2644 | 14.47 | 45500 | 1.8711 | 0.6809 | 0.6552 |
0.2739 | 14.63 | 46000 | 1.8439 | 0.6873 | 0.6534 |
0.2739 | 14.79 | 46500 | 1.8302 | 0.6828 | 0.6460 |
0.3012 | 14.95 | 47000 | 1.8708 | 0.6752 | 0.6454 |
0.3012 | 15.11 | 47500 | 1.8498 | 0.6822 | 0.6487 |
0.2805 | 15.27 | 48000 | 1.8908 | 0.6803 | 0.6453 |
0.2805 | 15.43 | 48500 | 1.9480 | 0.6790 | 0.6406 |
0.2895 | 15.59 | 49000 | 1.8994 | 0.6675 | 0.6392 |
0.2895 | 15.74 | 49500 | 1.9135 | 0.6790 | 0.6461 |
0.2444 | 15.9 | 50000 | 1.9387 | 0.6841 | 0.6480 |
0.2444 | 16.06 | 50500 | 1.9175 | 0.6745 | 0.6463 |
0.2569 | 16.22 | 51000 | 1.9332 | 0.6745 | 0.6472 |
0.2569 | 16.38 | 51500 | 1.9400 | 0.6771 | 0.6445 |
0.2251 | 16.54 | 52000 | 1.9596 | 0.6745 | 0.6441 |
0.2251 | 16.7 | 52500 | 1.9959 | 0.6835 | 0.6464 |
0.2686 | 16.86 | 53000 | 1.9879 | 0.6777 | 0.6456 |
0.2686 | 17.02 | 53500 | 1.9882 | 0.6828 | 0.6471 |
0.2168 | 17.18 | 54000 | 2.0254 | 0.6886 | 0.6520 |
0.2168 | 17.33 | 54500 | 2.0432 | 0.6777 | 0.6442 |
0.2735 | 17.49 | 55000 | 1.9843 | 0.6745 | 0.6443 |
0.2735 | 17.65 | 55500 | 2.0330 | 0.6828 | 0.6451 |
0.2159 | 17.81 | 56000 | 2.0698 | 0.6682 | 0.6423 |
0.2159 | 17.97 | 56500 | 1.9797 | 0.6771 | 0.6426 |
0.245 | 18.13 | 57000 | 2.0008 | 0.6726 | 0.6383 |
0.245 | 18.29 | 57500 | 2.0425 | 0.6816 | 0.6473 |
0.2036 | 18.45 | 58000 | 2.0482 | 0.6720 | 0.6356 |
0.2036 | 18.61 | 58500 | 2.0950 | 0.6675 | 0.6384 |
0.2336 | 18.77 | 59000 | 2.0167 | 0.6854 | 0.6458 |
0.2336 | 18.92 | 59500 | 1.9984 | 0.6809 | 0.6406 |
0.2332 | 19.08 | 60000 | 2.0552 | 0.6739 | 0.6441 |
0.2332 | 19.24 | 60500 | 2.0450 | 0.6784 | 0.6459 |
0.1984 | 19.4 | 61000 | 2.0599 | 0.6752 | 0.6434 |
0.1984 | 19.56 | 61500 | 2.0704 | 0.6784 | 0.6417 |
0.1945 | 19.72 | 62000 | 2.0755 | 0.6758 | 0.6445 |
0.1945 | 19.88 | 62500 | 2.0660 | 0.6809 | 0.6428 |
0.2143 | 20.04 | 63000 | 2.0670 | 0.6739 | 0.6448 |
0.2143 | 20.2 | 63500 | 2.0581 | 0.6873 | 0.6509 |
0.1878 | 20.36 | 64000 | 2.1272 | 0.6752 | 0.6452 |
0.1878 | 20.52 | 64500 | 2.1002 | 0.6803 | 0.6511 |
0.2144 | 20.67 | 65000 | 2.1383 | 0.6713 | 0.6438 |
0.2144 | 20.83 | 65500 | 2.1070 | 0.6809 | 0.6419 |
0.2121 | 20.99 | 66000 | 2.1273 | 0.6726 | 0.6412 |
0.2121 | 21.15 | 66500 | 2.1605 | 0.6707 | 0.6395 |
0.1835 | 21.31 | 67000 | 2.2891 | 0.6567 | 0.6331 |
0.1835 | 21.47 | 67500 | 2.2472 | 0.6765 | 0.6402 |
0.1991 | 21.63 | 68000 | 2.2238 | 0.6752 | 0.6412 |
0.1991 | 21.79 | 68500 | 2.1965 | 0.6669 | 0.6372 |
0.2018 | 21.95 | 69000 | 2.2050 | 0.6669 | 0.6395 |
0.2018 | 22.11 | 69500 | 2.1795 | 0.6803 | 0.6467 |
0.151 | 22.26 | 70000 | 2.2214 | 0.6777 | 0.6430 |
0.151 | 22.42 | 70500 | 2.1754 | 0.6867 | 0.6513 |
0.2078 | 22.58 | 71000 | 2.1959 | 0.6822 | 0.6488 |
0.2078 | 22.74 | 71500 | 2.1933 | 0.6860 | 0.6481 |
0.2004 | 22.9 | 72000 | 2.2001 | 0.6816 | 0.6500 |
0.2004 | 23.06 | 72500 | 2.2159 | 0.6784 | 0.6490 |
0.1773 | 23.22 | 73000 | 2.2603 | 0.6790 | 0.6462 |
0.1773 | 23.38 | 73500 | 2.2331 | 0.6777 | 0.6470 |
0.174 | 23.54 | 74000 | 2.2554 | 0.6765 | 0.6471 |
0.174 | 23.7 | 74500 | 2.2000 | 0.6854 | 0.6517 |
0.2071 | 23.85 | 75000 | 2.1896 | 0.6790 | 0.6500 |
0.2071 | 24.01 | 75500 | 2.2270 | 0.6828 | 0.6479 |
0.1419 | 24.17 | 76000 | 2.2776 | 0.6765 | 0.6426 |
0.1419 | 24.33 | 76500 | 2.2895 | 0.6809 | 0.6437 |
0.1564 | 24.49 | 77000 | 2.2746 | 0.6828 | 0.6515 |
0.1564 | 24.65 | 77500 | 2.3156 | 0.6765 | 0.6356 |
0.1802 | 24.81 | 78000 | 2.2891 | 0.6726 | 0.6426 |
0.1802 | 24.97 | 78500 | 2.2610 | 0.6835 | 0.6502 |
0.1795 | 25.13 | 79000 | 2.2856 | 0.6777 | 0.6478 |
0.1795 | 25.29 | 79500 | 2.2410 | 0.6828 | 0.6478 |
0.1753 | 25.45 | 80000 | 2.2738 | 0.6701 | 0.6451 |
0.1753 | 25.6 | 80500 | 2.2679 | 0.6847 | 0.6440 |
0.1517 | 25.76 | 81000 | 2.2667 | 0.6796 | 0.6525 |
0.1517 | 25.92 | 81500 | 2.3471 | 0.6682 | 0.6455 |
0.1593 | 26.08 | 82000 | 2.2945 | 0.6816 | 0.6504 |
0.1593 | 26.24 | 82500 | 2.3202 | 0.6841 | 0.6456 |
0.1332 | 26.4 | 83000 | 2.3667 | 0.6733 | 0.6405 |
0.1332 | 26.56 | 83500 | 2.3295 | 0.6771 | 0.6377 |
0.1765 | 26.72 | 84000 | 2.3680 | 0.6720 | 0.6394 |
0.1765 | 26.88 | 84500 | 2.3246 | 0.6828 | 0.6456 |
0.1578 | 27.04 | 85000 | 2.3192 | 0.6745 | 0.6453 |
0.1578 | 27.19 | 85500 | 2.3216 | 0.6822 | 0.6471 |
0.1355 | 27.35 | 86000 | 2.3730 | 0.6796 | 0.6490 |
0.1355 | 27.51 | 86500 | 2.3650 | 0.6758 | 0.6415 |
0.1308 | 27.67 | 87000 | 2.4015 | 0.6784 | 0.6471 |
0.1308 | 27.83 | 87500 | 2.3700 | 0.6809 | 0.6403 |
0.1446 | 27.99 | 88000 | 2.3748 | 0.6796 | 0.6483 |
0.1446 | 28.15 | 88500 | 2.3575 | 0.6809 | 0.6497 |
0.1135 | 28.31 | 89000 | 2.3663 | 0.6835 | 0.6438 |
0.1135 | 28.47 | 89500 | 2.3817 | 0.6809 | 0.6490 |
0.1354 | 28.63 | 90000 | 2.4026 | 0.6739 | 0.6436 |
0.1354 | 28.78 | 90500 | 2.3825 | 0.6745 | 0.6392 |
0.1661 | 28.94 | 91000 | 2.3461 | 0.6771 | 0.6482 |
0.1661 | 29.1 | 91500 | 2.3496 | 0.6771 | 0.6422 |
0.1188 | 29.26 | 92000 | 2.3568 | 0.6790 | 0.6488 |
0.1188 | 29.42 | 92500 | 2.3496 | 0.6828 | 0.6430 |
0.1433 | 29.58 | 93000 | 2.4252 | 0.6707 | 0.6378 |
0.1433 | 29.74 | 93500 | 2.3805 | 0.6847 | 0.6459 |
0.1328 | 29.9 | 94000 | 2.3918 | 0.6860 | 0.6495 |
0.1328 | 30.06 | 94500 | 2.4026 | 0.6828 | 0.6495 |
0.1317 | 30.22 | 95000 | 2.4319 | 0.6841 | 0.6483 |
0.1317 | 30.38 | 95500 | 2.4375 | 0.6828 | 0.6492 |
0.122 | 30.53 | 96000 | 2.4401 | 0.6822 | 0.6475 |
0.122 | 30.69 | 96500 | 2.4397 | 0.6860 | 0.6473 |
0.1266 | 30.85 | 97000 | 2.4572 | 0.6847 | 0.6504 |
0.1266 | 31.01 | 97500 | 2.4506 | 0.6847 | 0.6513 |
0.1437 | 31.17 | 98000 | 2.4251 | 0.6822 | 0.6496 |
0.1437 | 31.33 | 98500 | 2.4420 | 0.6822 | 0.6521 |
0.1205 | 31.49 | 99000 | 2.4446 | 0.6816 | 0.6464 |
0.1205 | 31.65 | 99500 | 2.4408 | 0.6790 | 0.6450 |
0.1188 | 31.81 | 100000 | 2.4522 | 0.6765 | 0.6487 |
0.1188 | 31.97 | 100500 | 2.4313 | 0.6828 | 0.6495 |
0.1326 | 32.12 | 101000 | 2.4577 | 0.6784 | 0.6466 |
0.1326 | 32.28 | 101500 | 2.4524 | 0.6822 | 0.6479 |
0.1103 | 32.44 | 102000 | 2.4665 | 0.6765 | 0.6426 |
0.1103 | 32.6 | 102500 | 2.4642 | 0.6777 | 0.6431 |
0.118 | 32.76 | 103000 | 2.4628 | 0.6771 | 0.6451 |
0.118 | 32.92 | 103500 | 2.4671 | 0.6835 | 0.6474 |
0.1214 | 33.08 | 104000 | 2.4613 | 0.6771 | 0.6503 |
0.1214 | 33.24 | 104500 | 2.4833 | 0.6771 | 0.6475 |
0.0965 | 33.4 | 105000 | 2.4888 | 0.6803 | 0.6450 |
0.0965 | 33.56 | 105500 | 2.4910 | 0.6816 | 0.6476 |
0.1207 | 33.72 | 106000 | 2.4806 | 0.6860 | 0.6482 |
0.1207 | 33.87 | 106500 | 2.4741 | 0.6771 | 0.6445 |
0.1277 | 34.03 | 107000 | 2.5050 | 0.6790 | 0.6409 |
0.1277 | 34.19 | 107500 | 2.4809 | 0.6777 | 0.6402 |
0.1164 | 34.35 | 108000 | 2.5006 | 0.6777 | 0.6428 |
0.1164 | 34.51 | 108500 | 2.4889 | 0.6822 | 0.6474 |
0.1103 | 34.67 | 109000 | 2.4852 | 0.6822 | 0.6457 |
0.1103 | 34.83 | 109500 | 2.4923 | 0.6771 | 0.6418 |
0.1013 | 34.99 | 110000 | 2.4662 | 0.6784 | 0.6437 |
0.1013 | 35.15 | 110500 | 2.4755 | 0.6822 | 0.6483 |
0.0922 | 35.31 | 111000 | 2.4908 | 0.6816 | 0.6465 |
0.0922 | 35.46 | 111500 | 2.4922 | 0.6809 | 0.6502 |
0.0856 | 35.62 | 112000 | 2.5096 | 0.6828 | 0.6422 |
0.0856 | 35.78 | 112500 | 2.5035 | 0.6828 | 0.6463 |
0.1005 | 35.94 | 113000 | 2.5231 | 0.6828 | 0.6452 |
0.1005 | 36.1 | 113500 | 2.5196 | 0.6796 | 0.6469 |
0.0884 | 36.26 | 114000 | 2.5187 | 0.6796 | 0.6444 |
0.0884 | 36.42 | 114500 | 2.5180 | 0.6790 | 0.6454 |
0.0891 | 36.58 | 115000 | 2.5407 | 0.6771 | 0.6442 |
0.0891 | 36.74 | 115500 | 2.5349 | 0.6765 | 0.6417 |
0.1082 | 36.9 | 116000 | 2.5451 | 0.6777 | 0.6427 |
0.1082 | 37.05 | 116500 | 2.5349 | 0.6803 | 0.6469 |
0.1072 | 37.21 | 117000 | 2.5507 | 0.6816 | 0.6457 |
0.1072 | 37.37 | 117500 | 2.5485 | 0.6790 | 0.6459 |
0.0882 | 37.53 | 118000 | 2.5477 | 0.6809 | 0.6448 |
0.0882 | 37.69 | 118500 | 2.5620 | 0.6790 | 0.6401 |
0.0852 | 37.85 | 119000 | 2.5597 | 0.6790 | 0.6447 |
0.0852 | 38.01 | 119500 | 2.5545 | 0.6796 | 0.6436 |
0.1029 | 38.17 | 120000 | 2.5519 | 0.6796 | 0.6436 |
0.1029 | 38.33 | 120500 | 2.5539 | 0.6822 | 0.6463 |
0.0903 | 38.49 | 121000 | 2.5590 | 0.6822 | 0.6490 |
0.0903 | 38.65 | 121500 | 2.5658 | 0.6803 | 0.6457 |
0.092 | 38.8 | 122000 | 2.5590 | 0.6803 | 0.6433 |
0.092 | 38.96 | 122500 | 2.5620 | 0.6803 | 0.6449 |
0.094 | 39.12 | 123000 | 2.5634 | 0.6796 | 0.6436 |
0.094 | 39.28 | 123500 | 2.5677 | 0.6790 | 0.6435 |
0.0801 | 39.44 | 124000 | 2.5662 | 0.6803 | 0.6445 |
0.0801 | 39.6 | 124500 | 2.5648 | 0.6796 | 0.6440 |
0.103 | 39.76 | 125000 | 2.5641 | 0.6809 | 0.6451 |
0.103 | 39.92 | 125500 | 2.5641 | 0.6803 | 0.6446 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.