File size: 15,917 Bytes
c8fe9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import torch
import wandb
import librosa
import torchaudio
import numpy as np
import pandas as pd
import seaborn as sns
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
from sklearn.utils import class_weight
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import train_test_split, StratifiedKFold
# Advanced Configuration with More Options
class Config:
"""Enhanced configuration for emotion recognition project"""
# Data paths
DATA_DIR = "archive"
# Audio processing parameters
SAMPLE_RATE = 22050 # Standard sample rate
DURATION = 3 # seconds
N_MFCC = 20
# Model hyperparameters
BATCH_SIZE = 32
LEARNING_RATE = 0.001
NUM_EPOCHS = 20
# Feature extraction parameters
FEATURES = [
"mfcc",
"spectral_centroid",
"chroma",
"spectral_contrast",
"zero_crossing_rate",
"spectral_rolloff",
]
# Augmentation parameters
AUGMENTATION = True
NOISE_FACTOR = 0.005
SCALE_RANGE = (0.9, 1.1)
def extract_advanced_features(file_path):
"""
Extract multiple audio features with more comprehensive approach
Args:
file_path (str): Path to the audio file
Returns:
numpy.ndarray: Concatenated feature vector
"""
# Load the audio file
y, sr = librosa.load(file_path, duration=Config.DURATION, sr=Config.SAMPLE_RATE)
# Feature extraction
features = []
# MFCC features (increased resolution)
if "mfcc" in Config.FEATURES:
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=Config.N_MFCC)
mfccs_processed = np.mean(mfccs.T, axis=0)
features.append(mfccs_processed)
# Spectral Centroid
if "spectral_centroid" in Config.FEATURES:
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)
spectral_centroids_processed = np.mean(spectral_centroids)
features.append([spectral_centroids_processed])
# Chroma Features
if "chroma" in Config.FEATURES:
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
chroma_processed = np.mean(chroma.T, axis=0)
features.append(chroma_processed)
# Spectral Contrast
if "spectral_contrast" in Config.FEATURES:
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
spectral_contrast_processed = np.mean(spectral_contrast.T, axis=0)
features.append(spectral_contrast_processed)
# Zero Crossing Rate
if "zero_crossing_rate" in Config.FEATURES:
zcr = librosa.feature.zero_crossing_rate(y)
zcr_processed = np.mean(zcr)
features.append([zcr_processed])
# Spectral Rolloff
if "spectral_rolloff" in Config.FEATURES:
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
spectral_rolloff_processed = np.mean(spectral_rolloff)
features.append([spectral_rolloff_processed])
# Concatenate all features
return np.concatenate(features)
def augment_features(
features, noise_factor=Config.NOISE_FACTOR, scale_range=Config.SCALE_RANGE
):
"""
Advanced feature augmentation technique
Args:
features (numpy.ndarray): Input feature array
noise_factor (float): Magnitude of noise to add
scale_range (tuple): Range for feature scaling
Returns:
numpy.ndarray: Augmented features
"""
if not Config.AUGMENTATION:
return features
# Add Gaussian noise
noise = np.random.normal(0, noise_factor, features.shape)
augmented_features = features + noise
# Random scaling
scale_factor = np.random.uniform(scale_range[0], scale_range[1])
augmented_features *= scale_factor
return augmented_features
def prepare_dataset(data_dir):
"""
Prepare dataset with more robust feature extraction and potential augmentation
Args:
data_dir (str): Root directory containing actor subdirectories
Returns:
tuple: Features and labels
"""
features = []
labels = []
# Emotion mapping with potential for expansion
emotion_map = {
"01": "neutral",
"02": "calm",
"03": "happy",
"04": "sad",
"05": "angry",
"06": "fearful",
"07": "disgust",
"08": "surprised",
}
# Walk through all directories and subdirectories
for root, dirs, files in os.walk(data_dir):
for filename in files:
if filename.endswith(".wav"):
# Full file path
file_path = os.path.join(root, filename)
try:
# Extract emotion from filename
emotion_code = filename.split("-")[2]
emotion = emotion_map.get(emotion_code, "unknown")
# Extract original features
file_features = extract_advanced_features(file_path)
features.append(file_features)
labels.append(emotion)
# Optional augmentation
if Config.AUGMENTATION:
augmented_features = augment_features(file_features)
features.append(augmented_features)
labels.append(emotion)
except Exception as e:
print(f"Error processing {filename}: {e}")
# Informative print about dataset
print(f"Dataset Summary:")
print(f"Total files processed: {len(features)}")
# Count of emotions
from collections import Counter
emotion_counts = Counter(labels)
for emotion, count in emotion_counts.items():
print(f"{emotion.capitalize()} emotion: {count} samples")
return np.array(features), np.array(labels)
class EmotionDataset(Dataset):
"""Enhanced Custom PyTorch Dataset for Emotion Recognition"""
def __init__(self, features, labels, scaler=None):
# Standardize features
if scaler is None:
self.scaler = StandardScaler()
features = self.scaler.fit_transform(features)
else:
features = scaler.transform(features)
self.features = torch.FloatTensor(features)
# Encode labels
self.label_encoder = LabelEncoder()
self.labels = torch.LongTensor(self.label_encoder.fit_transform(labels))
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return self.features[idx], self.labels[idx]
def get_num_classes(self):
return len(self.label_encoder.classes_)
def get_class_names(self):
return self.label_encoder.classes_
class HybridEmotionRecognitionModel(nn.Module):
"""Advanced Hybrid Neural Network for Emotion Recognition"""
def __init__(self, input_dim, num_classes):
super().__init__()
# Enhanced input projection with residual connection
self.input_projection = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.ReLU(),
)
# More complex convolutional layers with residual connections
self.conv_layers = nn.ModuleList(
[
nn.Sequential(
nn.Conv1d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.MaxPool1d(2),
),
nn.Sequential(
nn.Conv1d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.MaxPool1d(2),
),
]
)
# Bidirectional LSTM with more layers
self.lstm_layers = nn.LSTM(
input_size=128,
hidden_size=256,
num_layers=3,
batch_first=True,
bidirectional=True,
dropout=0.4,
)
# More complex fully connected layers
self.fc_layers = nn.Sequential(
nn.Linear(512, 256), # Note the 512 due to bidirectional LSTM
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Dropout(0.3),
)
self.output_layer = nn.Linear(128, num_classes)
def forward(self, x):
# Input projection
x = self.input_projection(x)
# Reshape for conv layers
x = x.unsqueeze(1)
# Convolutional layers with residual-like processing
for conv_layer in self.conv_layers:
x = conv_layer(x)
# Prepare for LSTM
x = x.permute(0, 2, 1)
# LSTM processing
lstm_out, _ = self.lstm_layers(x)
x = lstm_out[:, -1, :]
# Fully connected layers
x = self.fc_layers(x)
return self.output_layer(x)
def train_model(model, train_loader, val_loader, labels, num_epochs=Config.NUM_EPOCHS):
"""
Advanced training function with improved techniques
Args:
model (nn.Module): PyTorch model
train_loader (DataLoader): Training data loader
val_loader (DataLoader): Validation data loader
labels (numpy.ndarray): Original labels for class weight computation
num_epochs (int): Number of training epochs
"""
# Compute class weights to handle class imbalance
class_weights = class_weight.compute_class_weight(
"balanced", classes=np.unique(labels), y=labels
)
class_weights = torch.FloatTensor(class_weights)
# Loss with class weights
criterion = nn.CrossEntropyLoss(weight=class_weights)
# Adam with weight decay (L2 regularization)
optimizer = optim.AdamW(
model.parameters(), lr=Config.LEARNING_RATE, weight_decay=1e-5
)
# Learning rate scheduler
scheduler = ReduceLROnPlateau(
optimizer, mode="min", factor=0.5, patience=5, verbose=True
)
# Initialize wandb
wandb.init(
project="SentimentSound",
config={
"learning_rate": Config.LEARNING_RATE,
"batch_size": Config.BATCH_SIZE,
"epochs": num_epochs,
"augmentation": Config.AUGMENTATION,
},
)
# Training loop with more advanced techniques
best_val_loss = float("inf")
for epoch in range(num_epochs):
model.train()
train_loss = 0
train_correct = 0
train_total = 0
for features, batch_labels in train_loader:
optimizer.zero_grad()
# Forward and backward pass
outputs = model(features)
loss = criterion(outputs, batch_labels)
loss.backward()
# Gradient clipping
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
train_total += batch_labels.size(0)
train_correct += (predicted == batch_labels).sum().item()
# Validation
model.eval()
val_loss = 0
val_correct = 0
val_total = 0
with torch.no_grad():
for features, batch_labels in val_loader:
outputs = model(features)
loss = criterion(outputs, batch_labels)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
val_total += batch_labels.size(0)
val_correct += (predicted == batch_labels).sum().item()
# Compute metrics
train_accuracy = 100 * train_correct / train_total
val_accuracy = 100 * val_correct / val_total
# Learning rate scheduling
scheduler.step(val_loss)
# Logging to wandb
wandb.log(
{
"train_loss": train_loss / len(train_loader),
"train_accuracy": train_accuracy,
"val_loss": val_loss / len(val_loader),
"val_accuracy": val_accuracy,
}
)
# Print epoch summary
print(f"Epoch {epoch+1}/{num_epochs}")
print(f"Train Loss: {train_loss / len(train_loader):.4f}")
print(f"Train Accuracy: {train_accuracy:.2f}%")
print(f"Val Loss: {val_loss / len(val_loader):.4f}")
print(f"Val Accuracy: {val_accuracy:.2f}%")
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "best_emotion_model.pth")
# Finish wandb run
wandb.finish()
return model
def evaluate_model(model, test_loader, dataset):
"""
Evaluate the model and generate detailed metrics
Args:
model (nn.Module): Trained PyTorch model
test_loader (DataLoader): Test data loader
dataset (EmotionDataset): Dataset for class names
"""
model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for features, labels in test_loader:
outputs = model(features)
_, predicted = torch.max(outputs, 1)
all_preds.extend(predicted.numpy())
all_labels.extend(labels.numpy())
# Classification Report
class_names = dataset.get_class_names()
print("\nClassification Report:")
print(classification_report(all_labels, all_preds, target_names=class_names))
# Confusion Matrix Visualization
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(10, 8))
sns.heatmap(
cm, annot=True, fmt="d", xticklabels=class_names, yticklabels=class_names
)
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.tight_layout()
plt.savefig("confusion_matrix.png")
plt.close()
def main():
# Set random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
# Data Preparation
features, labels = prepare_dataset(Config.DATA_DIR)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
features, labels, test_size=0.2, random_state=42
)
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=0.2, random_state=42
)
# Create datasets
train_dataset = EmotionDataset(X_train, y_train)
val_dataset = EmotionDataset(X_val, y_val)
test_dataset = EmotionDataset(X_test, y_test)
# Data loaders
train_loader = DataLoader(train_dataset, batch_size=Config.BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=Config.BATCH_SIZE)
test_loader = DataLoader(test_dataset, batch_size=Config.BATCH_SIZE)
# Model Initialization
model = HybridEmotionRecognitionModel(
input_dim=len(X_train[0]), num_classes=train_dataset.get_num_classes()
)
# Train Model
train_model(
model,
train_loader,
val_loader,
labels,
num_epochs=Config.NUM_EPOCHS,
)
# Evaluate Model
evaluate_model(model, test_loader, train_dataset)
if __name__ == "__main__":
main()
|