|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: DNADebertaSentencepiece30k_continuation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# DNADebertaSentencepiece30k_continuation |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 6.0813 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:------:|:---------------:| |
|
| 6.4099 | 0.41 | 5000 | 6.3686 | |
|
| 6.4014 | 0.81 | 10000 | 6.3544 | |
|
| 6.3816 | 1.22 | 15000 | 6.3338 | |
|
| 6.3652 | 1.62 | 20000 | 6.3161 | |
|
| 6.3477 | 2.03 | 25000 | 6.2981 | |
|
| 6.3305 | 2.44 | 30000 | 6.2851 | |
|
| 6.3173 | 2.84 | 35000 | 6.2725 | |
|
| 6.306 | 3.25 | 40000 | 6.2559 | |
|
| 6.2903 | 3.66 | 45000 | 6.2447 | |
|
| 6.2806 | 4.06 | 50000 | 6.2342 | |
|
| 6.2654 | 4.47 | 55000 | 6.2213 | |
|
| 6.2592 | 4.87 | 60000 | 6.2101 | |
|
| 6.2481 | 5.28 | 65000 | 6.2023 | |
|
| 6.2394 | 5.69 | 70000 | 6.1929 | |
|
| 6.2295 | 6.09 | 75000 | 6.1833 | |
|
| 6.219 | 6.5 | 80000 | 6.1800 | |
|
| 6.2143 | 6.91 | 85000 | 6.1698 | |
|
| 6.2031 | 7.31 | 90000 | 6.1629 | |
|
| 6.2036 | 7.72 | 95000 | 6.1523 | |
|
| 6.1923 | 8.12 | 100000 | 6.1522 | |
|
| 6.1868 | 8.53 | 105000 | 6.1426 | |
|
| 6.1827 | 8.94 | 110000 | 6.1356 | |
|
| 6.1767 | 9.34 | 115000 | 6.1322 | |
|
| 6.1717 | 9.75 | 120000 | 6.1255 | |
|
| 6.1649 | 10.16 | 125000 | 6.1221 | |
|
| 6.1591 | 10.56 | 130000 | 6.1176 | |
|
| 6.1562 | 10.97 | 135000 | 6.1111 | |
|
| 6.15 | 11.37 | 140000 | 6.1063 | |
|
| 6.1488 | 11.78 | 145000 | 6.1046 | |
|
| 6.1449 | 12.19 | 150000 | 6.1023 | |
|
| 6.1397 | 12.59 | 155000 | 6.0961 | |
|
| 6.135 | 13.0 | 160000 | 6.0938 | |
|
| 6.1315 | 13.41 | 165000 | 6.0891 | |
|
| 6.1302 | 13.81 | 170000 | 6.0853 | |
|
| 6.1295 | 14.22 | 175000 | 6.0838 | |
|
| 6.1276 | 14.62 | 180000 | 6.0834 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|