Shuichi / bigbench.py
Voryoji's picture
Upload 2 files
b799660
# coding=utf-8
# Lint as: python3
"""bigbench datasets"""
from __future__ import absolute_import, division, print_function
import json
import os
import textwrap
import six
import datasets
CITATION = r"""
@article{srivastava2022beyond,
title={Beyond the imitation game: Quantifying and extrapolating the capabilities of language models},
author={Srivastava, Aarohi and Rastogi, Abhinav and Rao, Abhishek and Shoeb, Abu Awal Md and Abid, Abubakar and Fisch, Adam and Brown, Adam R and Santoro, Adam and Gupta, Aditya and Garriga-Alonso, Adri{\`a} and others},
journal={arXiv preprint arXiv:2206.04615},
year={2022}
}
"""
DESCRIPTION = """\
bigbench json tasks
"""
DATA_URL = "https://www.dropbox.com/s/cjdywlalikdb1c6/bigbench.zip?dl=1"
CONFIGS=['abstract_narrative_understanding',
'anachronisms',
'analogical_similarity',
'analytic_entailment',
'arithmetic',
'ascii_word_recognition',
'authorship_verification',
'auto_categorization',
'auto_debugging',
'bbq_lite_json',
'bridging_anaphora_resolution_barqa',
'causal_judgment',
'cause_and_effect',
'checkmate_in_one',
'chess_state_tracking',
'chinese_remainder_theorem',
'cifar10_classification',
'code_line_description',
'codenames',
'color',
'common_morpheme',
'conceptual_combinations',
'conlang_translation',
'contextual_parametric_knowledge_conflicts',
'crash_blossom',
'crass_ai',
'cryobiology_spanish',
'cryptonite',
'cs_algorithms',
'dark_humor_detection',
'date_understanding',
'disambiguation_qa',
'discourse_marker_prediction',
'disfl_qa',
'dyck_languages',
'elementary_math_qa',
'emoji_movie',
'emojis_emotion_prediction',
'empirical_judgments',
'english_proverbs',
'english_russian_proverbs',
'entailed_polarity',
'entailed_polarity_hindi',
'epistemic_reasoning',
'evaluating_information_essentiality',
'fact_checker',
'fantasy_reasoning',
'few_shot_nlg',
'figure_of_speech_detection',
'formal_fallacies_syllogisms_negation',
'gem',
'gender_inclusive_sentences_german',
'general_knowledge',
'geometric_shapes',
'goal_step_wikihow',
'gre_reading_comprehension',
'hhh_alignment',
'hindi_question_answering',
'hindu_knowledge',
'hinglish_toxicity',
'human_organs_senses',
'hyperbaton',
'identify_math_theorems',
'identify_odd_metaphor',
'implicatures',
'implicit_relations',
'indic_cause_and_effect',
'intent_recognition',
'international_phonetic_alphabet_nli',
'international_phonetic_alphabet_transliterate',
'intersect_geometry',
'irony_identification',
'kanji_ascii',
'kannada',
'key_value_maps',
'known_unknowns',
'language_games',
'language_identification',
'linguistic_mappings',
'linguistics_puzzles',
'list_functions',
'logic_grid_puzzle',
'logical_args',
'logical_deduction',
'logical_fallacy_detection',
'logical_sequence',
'mathematical_induction',
'matrixshapes',
'medical_questions_russian',
'metaphor_boolean',
'metaphor_understanding',
'minute_mysteries_qa',
'misconceptions',
'misconceptions_russian',
'mnist_ascii',
'modified_arithmetic',
'moral_permissibility',
'movie_dialog_same_or_different',
'movie_recommendation',
'mult_data_wrangling',
'navigate',
'nonsense_words_grammar',
'novel_concepts',
'object_counting',
'odd_one_out',
'operators',
'paragraph_segmentation',
'parsinlu_qa',
'parsinlu_reading_comprehension',
'penguins_in_a_table',
'periodic_elements',
'persian_idioms',
'phrase_relatedness',
'physical_intuition',
'physics',
'physics_questions',
'play_dialog_same_or_different',
'polish_sequence_labeling',
'presuppositions_as_nli',
'qa_wikidata',
'question_selection',
'real_or_fake_text',
'reasoning_about_colored_objects',
'repeat_copy_logic',
'rephrase',
'rhyming',
'riddle_sense',
'ruin_names',
'salient_translation_error_detection',
'scientific_press_release',
'semantic_parsing_in_context_sparc',
'semantic_parsing_spider',
'sentence_ambiguity',
'similarities_abstraction',
'simp_turing_concept',
'simple_arithmetic_json',
'simple_arithmetic_json_multiple_choice',
'simple_arithmetic_json_subtasks',
'simple_arithmetic_multiple_targets_json',
'simple_ethical_questions',
'simple_text_editing',
'snarks',
'social_iqa',
'social_support',
'sports_understanding',
'strange_stories',
'strategyqa',
'sufficient_information',
'suicide_risk',
'swahili_english_proverbs',
'swedish_to_german_proverbs',
'symbol_interpretation',
'tellmewhy',
'temporal_sequences',
'tense',
'timedial',
'topical_chat',
'tracking_shuffled_objects',
'understanding_fables',
'undo_permutation',
'unit_conversion',
'unit_interpretation',
'unnatural_in_context_learning',
'vitaminc_fact_verification',
'what_is_the_tao',
'which_wiki_edit',
'winowhy',
'word_sorting',
'word_unscrambling']
class bigbench_Config(datasets.BuilderConfig):
"""BuilderConfig for bigbench."""
def __init__(
self,
text_features,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for bigbench.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
"""
super(bigbench_Config, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
self.text_features = text_features
self.data_url = DATA_URL
self.data_dir = self.name #os.path.join("bigbench", self.name)
self.citation = textwrap.dedent(CITATION)
self.description = ""
self.url = "https://github.com/google/BIG-bench"
class bigbench(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (bigbench) benchmark."""
BUILDER_CONFIG_CLASS = bigbench_Config
BUILDER_CONFIGS = [
bigbench_Config(
name=name,
text_features={"inputs": "inputs"},
) for name in CONFIGS
]
def _info(self):
features = {
"inputs": datasets.Value("string"),
"targets": datasets.features.Sequence(datasets.Value("string")),
"multiple_choice_targets": datasets.features.Sequence(datasets.Value("string")),
"multiple_choice_scores": datasets.features.Sequence(datasets.Value("int32")),
}
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "validation.jsonl"),
"split": "validation",
},
),
]
def _generate_examples(self, data_file,split):
"""Yields examples."""
with open(data_file, "r", encoding="utf-8") as f:
for id_, line in enumerate(f):
line_dict = json.loads(line)
yield id_, line_dict