SegFormer_b2_2

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5687
  • Mean Iou: 0.7141
  • Mean Accuracy: 0.8338
  • Overall Accuracy: 0.9518
  • Accuracy Road: 0.9861
  • Accuracy Sidewalk: 0.9403
  • Accuracy Building: 0.9549
  • Accuracy Wall: 0.7046
  • Accuracy Fence: 0.7106
  • Accuracy Pole: 0.6880
  • Accuracy Traffic light: 0.8719
  • Accuracy Traffic sign: 0.8349
  • Accuracy Vegetation: 0.9442
  • Accuracy Terrain: 0.6876
  • Accuracy Sky: 0.9817
  • Accuracy Person: 0.8778
  • Accuracy Rider: 0.5796
  • Accuracy Car: 0.9746
  • Accuracy Truck: 0.7663
  • Accuracy Bus: 0.9041
  • Accuracy Train: 0.7933
  • Accuracy Motorcycle: 0.7614
  • Accuracy Bicycle: 0.8798
  • Iou Road: 0.9809
  • Iou Sidewalk: 0.8418
  • Iou Building: 0.9125
  • Iou Wall: 0.5459
  • Iou Fence: 0.5277
  • Iou Pole: 0.5466
  • Iou Traffic light: 0.6398
  • Iou Traffic sign: 0.7499
  • Iou Vegetation: 0.9115
  • Iou Terrain: 0.5282
  • Iou Sky: 0.9396
  • Iou Person: 0.7568
  • Iou Rider: 0.4521
  • Iou Car: 0.9319
  • Iou Truck: 0.6160
  • Iou Bus: 0.7445
  • Iou Train: 0.6995
  • Iou Motorcycle: 0.5142
  • Iou Bicycle: 0.7285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 130
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road Accuracy Sidewalk Accuracy Building Accuracy Wall Accuracy Fence Accuracy Pole Accuracy Traffic light Accuracy Traffic sign Accuracy Vegetation Accuracy Terrain Accuracy Sky Accuracy Person Accuracy Rider Accuracy Car Accuracy Truck Accuracy Bus Accuracy Train Accuracy Motorcycle Accuracy Bicycle Iou Road Iou Sidewalk Iou Building Iou Wall Iou Fence Iou Pole Iou Traffic light Iou Traffic sign Iou Vegetation Iou Terrain Iou Sky Iou Person Iou Rider Iou Car Iou Truck Iou Bus Iou Train Iou Motorcycle Iou Bicycle
0.6593 0.2688 100 0.5767 0.7490 0.8653 0.9557 0.9879 0.9291 0.9527 0.6811 0.6907 0.7639 0.8966 0.8935 0.9505 0.7808 0.9856 0.9001 0.7336 0.9768 0.7932 0.9450 0.8737 0.8252 0.8802 0.9820 0.8569 0.9152 0.6022 0.5665 0.5525 0.6085 0.7337 0.9183 0.6399 0.9381 0.7709 0.5525 0.9413 0.7157 0.8153 0.8165 0.5705 0.7338
0.6791 0.5376 200 0.5698 0.7492 0.8600 0.9561 0.9880 0.9336 0.9583 0.6325 0.7103 0.7513 0.8553 0.8639 0.9489 0.7918 0.9852 0.8956 0.7517 0.9729 0.7818 0.9393 0.8832 0.8112 0.8840 0.9821 0.8560 0.9163 0.5714 0.5725 0.5599 0.6532 0.7479 0.9181 0.6287 0.9407 0.7748 0.5506 0.9428 0.6955 0.8014 0.8020 0.5780 0.7421
0.684 0.8065 300 0.5660 0.7540 0.8645 0.9570 0.9883 0.9310 0.9544 0.7076 0.7504 0.7494 0.8755 0.8758 0.9524 0.8069 0.9867 0.8878 0.7234 0.9740 0.7900 0.9457 0.8782 0.7426 0.9050 0.9827 0.8597 0.9187 0.6108 0.5737 0.5617 0.6427 0.7589 0.9198 0.6545 0.9430 0.7718 0.5517 0.9434 0.7264 0.7988 0.7947 0.5935 0.7189
0.658 1.0753 400 0.5648 0.7555 0.8713 0.9566 0.9876 0.9253 0.9519 0.7672 0.6932 0.7528 0.8699 0.8854 0.9538 0.7916 0.9818 0.9127 0.7634 0.9750 0.8688 0.9482 0.8984 0.7359 0.8924 0.9820 0.8559 0.9184 0.6372 0.5723 0.5547 0.6505 0.7551 0.9188 0.6353 0.9460 0.7588 0.5468 0.9409 0.7869 0.8348 0.7207 0.6050 0.7344
0.5832 1.3441 500 0.5662 0.7441 0.8714 0.9555 0.9888 0.9327 0.9422 0.7124 0.7149 0.7371 0.8847 0.8679 0.9616 0.7678 0.9862 0.8949 0.7883 0.9697 0.8754 0.9480 0.9008 0.7969 0.8863 0.9828 0.8533 0.9149 0.6197 0.5738 0.5542 0.6272 0.7509 0.9178 0.6262 0.9390 0.7630 0.5299 0.9410 0.7117 0.8474 0.7103 0.5715 0.7036
0.5949 1.6129 600 0.5658 0.7512 0.8710 0.9555 0.9878 0.9256 0.9433 0.7911 0.7468 0.7528 0.9006 0.8701 0.9563 0.7578 0.9817 0.9151 0.7248 0.9787 0.9052 0.9474 0.8130 0.7913 0.8603 0.9815 0.8545 0.9147 0.6437 0.5660 0.5541 0.6132 0.7441 0.9176 0.6410 0.9440 0.7493 0.5356 0.9394 0.7897 0.8492 0.7631 0.5436 0.7285
0.5894 1.8817 700 0.5636 0.7371 0.8666 0.9543 0.9869 0.9263 0.9460 0.7916 0.6749 0.7552 0.8802 0.8670 0.9504 0.8268 0.9835 0.9047 0.7147 0.9759 0.8055 0.9644 0.7929 0.8427 0.8767 0.9815 0.8548 0.9136 0.6382 0.5519 0.5478 0.6420 0.7505 0.9150 0.6215 0.9411 0.7632 0.5342 0.9389 0.7291 0.7657 0.7170 0.4891 0.7087
0.5715 2.1505 800 0.5679 0.7431 0.8700 0.9549 0.9862 0.9338 0.9460 0.7668 0.7404 0.7456 0.8754 0.8627 0.9608 0.7677 0.9812 0.8570 0.8195 0.9624 0.8757 0.9346 0.9068 0.7152 0.8921 0.9817 0.8523 0.9154 0.6357 0.5846 0.5438 0.6327 0.7417 0.9165 0.6558 0.9434 0.7518 0.4961 0.9354 0.6757 0.8227 0.7332 0.5868 0.7143
0.6365 2.4194 900 0.5647 0.7432 0.8610 0.9548 0.9870 0.9341 0.9505 0.6885 0.6909 0.7165 0.8781 0.8895 0.9547 0.7721 0.9881 0.8999 0.7258 0.9706 0.8670 0.9193 0.9065 0.7449 0.8744 0.9820 0.8544 0.9128 0.5677 0.5229 0.5553 0.6414 0.7557 0.9180 0.6489 0.9289 0.7704 0.5566 0.9367 0.7645 0.8216 0.7082 0.5442 0.7298
0.6795 2.6882 1000 0.5673 0.7301 0.8648 0.9525 0.9838 0.9305 0.9489 0.6736 0.7227 0.7042 0.9196 0.8746 0.9526 0.7629 0.9884 0.8850 0.7949 0.9674 0.8915 0.9001 0.8440 0.7920 0.8939 0.9788 0.8417 0.9104 0.5765 0.5507 0.5537 0.5471 0.7434 0.9160 0.6141 0.9285 0.7561 0.5163 0.9338 0.7324 0.8068 0.7732 0.4745 0.7187
0.6517 2.9570 1100 0.5647 0.7173 0.8507 0.9512 0.9836 0.9402 0.9490 0.7080 0.6173 0.7459 0.8519 0.8803 0.9454 0.7947 0.9821 0.8759 0.7743 0.9645 0.9189 0.9356 0.7035 0.7064 0.8856 0.9796 0.8370 0.9103 0.5719 0.5054 0.5426 0.6418 0.7274 0.9125 0.5885 0.9426 0.7510 0.5055 0.9346 0.7204 0.7279 0.6447 0.4707 0.7137
0.6038 3.2258 1200 0.5645 0.7330 0.8552 0.9526 0.9843 0.9456 0.9536 0.7353 0.7254 0.7528 0.8507 0.8675 0.9411 0.7901 0.9830 0.8741 0.7417 0.9695 0.7350 0.8992 0.8817 0.7758 0.8421 0.9799 0.8397 0.9131 0.6145 0.5277 0.5483 0.6496 0.7479 0.9124 0.5919 0.9413 0.7624 0.5452 0.9372 0.6455 0.7698 0.7256 0.5486 0.7257
0.6218 3.4946 1300 0.5641 0.7224 0.8571 0.9524 0.9863 0.9358 0.9425 0.7547 0.6836 0.7491 0.8775 0.8444 0.9505 0.8109 0.9820 0.9127 0.7426 0.9710 0.6970 0.9102 0.9148 0.7668 0.8517 0.9810 0.8483 0.9106 0.6126 0.5573 0.5396 0.6359 0.7261 0.9120 0.6001 0.9429 0.7474 0.5381 0.9369 0.6221 0.7279 0.6511 0.5116 0.7233
0.5334 3.7634 1400 0.5687 0.7141 0.8338 0.9518 0.9861 0.9403 0.9549 0.7046 0.7106 0.6880 0.8719 0.8349 0.9442 0.6876 0.9817 0.8778 0.5796 0.9746 0.7663 0.9041 0.7933 0.7614 0.8798 0.9809 0.8418 0.9125 0.5459 0.5277 0.5466 0.6398 0.7499 0.9115 0.5282 0.9396 0.7568 0.4521 0.9319 0.6160 0.7445 0.6995 0.5142 0.7285

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Vrjb/SegFormer_b2_2

Finetuned
(5)
this model