File size: 13,688 Bytes
9d583a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6547db8
9d583a1
aa460a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d583a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa460a0
 
9d583a1
 
aa460a0
9d583a1
 
aa460a0
310acc3
9d583a1
 
 
 
aa460a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d583a1
 
 
 
310acc3
9d583a1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
library_name: transformers
license: other
base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
tags:
- generated_from_trainer
model-index:
- name: SegFormer_b2_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_b2_2

This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5687
- Mean Iou: 0.7141
- Mean Accuracy: 0.8338
- Overall Accuracy: 0.9518
- Accuracy Road: 0.9861
- Accuracy Sidewalk: 0.9403
- Accuracy Building: 0.9549
- Accuracy Wall: 0.7046
- Accuracy Fence: 0.7106
- Accuracy Pole: 0.6880
- Accuracy Traffic light: 0.8719
- Accuracy Traffic sign: 0.8349
- Accuracy Vegetation: 0.9442
- Accuracy Terrain: 0.6876
- Accuracy Sky: 0.9817
- Accuracy Person: 0.8778
- Accuracy Rider: 0.5796
- Accuracy Car: 0.9746
- Accuracy Truck: 0.7663
- Accuracy Bus: 0.9041
- Accuracy Train: 0.7933
- Accuracy Motorcycle: 0.7614
- Accuracy Bicycle: 0.8798
- Iou Road: 0.9809
- Iou Sidewalk: 0.8418
- Iou Building: 0.9125
- Iou Wall: 0.5459
- Iou Fence: 0.5277
- Iou Pole: 0.5466
- Iou Traffic light: 0.6398
- Iou Traffic sign: 0.7499
- Iou Vegetation: 0.9115
- Iou Terrain: 0.5282
- Iou Sky: 0.9396
- Iou Person: 0.7568
- Iou Rider: 0.4521
- Iou Car: 0.9319
- Iou Truck: 0.6160
- Iou Bus: 0.7445
- Iou Train: 0.6995
- Iou Motorcycle: 0.5142
- Iou Bicycle: 0.7285

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 130
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Road | Accuracy Sidewalk | Accuracy Building | Accuracy Wall | Accuracy Fence | Accuracy Pole | Accuracy Traffic light | Accuracy Traffic sign | Accuracy Vegetation | Accuracy Terrain | Accuracy Sky | Accuracy Person | Accuracy Rider | Accuracy Car | Accuracy Truck | Accuracy Bus | Accuracy Train | Accuracy Motorcycle | Accuracy Bicycle | Iou Road | Iou Sidewalk | Iou Building | Iou Wall | Iou Fence | Iou Pole | Iou Traffic light | Iou Traffic sign | Iou Vegetation | Iou Terrain | Iou Sky | Iou Person | Iou Rider | Iou Car | Iou Truck | Iou Bus | Iou Train | Iou Motorcycle | Iou Bicycle |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:---------------:|:--------------:|:------------:|:--------------:|:------------:|:--------------:|:-------------------:|:----------------:|:--------:|:------------:|:------------:|:--------:|:---------:|:--------:|:-----------------:|:----------------:|:--------------:|:-----------:|:-------:|:----------:|:---------:|:-------:|:---------:|:-------:|:---------:|:--------------:|:-----------:|
| 0.6593        | 0.2688 | 100  | 0.5767          | 0.7490   | 0.8653        | 0.9557           | 0.9879        | 0.9291            | 0.9527            | 0.6811        | 0.6907         | 0.7639        | 0.8966                 | 0.8935                | 0.9505              | 0.7808           | 0.9856       | 0.9001          | 0.7336         | 0.9768       | 0.7932         | 0.9450       | 0.8737         | 0.8252              | 0.8802           | 0.9820   | 0.8569       | 0.9152       | 0.6022   | 0.5665    | 0.5525   | 0.6085            | 0.7337           | 0.9183         | 0.6399      | 0.9381  | 0.7709     | 0.5525    | 0.9413  | 0.7157    | 0.8153  | 0.8165    | 0.5705         | 0.7338      |
| 0.6791        | 0.5376 | 200  | 0.5698          | 0.7492   | 0.8600        | 0.9561           | 0.9880        | 0.9336            | 0.9583            | 0.6325        | 0.7103         | 0.7513        | 0.8553                 | 0.8639                | 0.9489              | 0.7918           | 0.9852       | 0.8956          | 0.7517         | 0.9729       | 0.7818         | 0.9393       | 0.8832         | 0.8112              | 0.8840           | 0.9821   | 0.8560       | 0.9163       | 0.5714   | 0.5725    | 0.5599   | 0.6532            | 0.7479           | 0.9181         | 0.6287      | 0.9407  | 0.7748     | 0.5506    | 0.9428  | 0.6955    | 0.8014  | 0.8020    | 0.5780         | 0.7421      |
| 0.684         | 0.8065 | 300  | 0.5660          | 0.7540   | 0.8645        | 0.9570           | 0.9883        | 0.9310            | 0.9544            | 0.7076        | 0.7504         | 0.7494        | 0.8755                 | 0.8758                | 0.9524              | 0.8069           | 0.9867       | 0.8878          | 0.7234         | 0.9740       | 0.7900         | 0.9457       | 0.8782         | 0.7426              | 0.9050           | 0.9827   | 0.8597       | 0.9187       | 0.6108   | 0.5737    | 0.5617   | 0.6427            | 0.7589           | 0.9198         | 0.6545      | 0.9430  | 0.7718     | 0.5517    | 0.9434  | 0.7264    | 0.7988  | 0.7947    | 0.5935         | 0.7189      |
| 0.658         | 1.0753 | 400  | 0.5648          | 0.7555   | 0.8713        | 0.9566           | 0.9876        | 0.9253            | 0.9519            | 0.7672        | 0.6932         | 0.7528        | 0.8699                 | 0.8854                | 0.9538              | 0.7916           | 0.9818       | 0.9127          | 0.7634         | 0.9750       | 0.8688         | 0.9482       | 0.8984         | 0.7359              | 0.8924           | 0.9820   | 0.8559       | 0.9184       | 0.6372   | 0.5723    | 0.5547   | 0.6505            | 0.7551           | 0.9188         | 0.6353      | 0.9460  | 0.7588     | 0.5468    | 0.9409  | 0.7869    | 0.8348  | 0.7207    | 0.6050         | 0.7344      |
| 0.5832        | 1.3441 | 500  | 0.5662          | 0.7441   | 0.8714        | 0.9555           | 0.9888        | 0.9327            | 0.9422            | 0.7124        | 0.7149         | 0.7371        | 0.8847                 | 0.8679                | 0.9616              | 0.7678           | 0.9862       | 0.8949          | 0.7883         | 0.9697       | 0.8754         | 0.9480       | 0.9008         | 0.7969              | 0.8863           | 0.9828   | 0.8533       | 0.9149       | 0.6197   | 0.5738    | 0.5542   | 0.6272            | 0.7509           | 0.9178         | 0.6262      | 0.9390  | 0.7630     | 0.5299    | 0.9410  | 0.7117    | 0.8474  | 0.7103    | 0.5715         | 0.7036      |
| 0.5949        | 1.6129 | 600  | 0.5658          | 0.7512   | 0.8710        | 0.9555           | 0.9878        | 0.9256            | 0.9433            | 0.7911        | 0.7468         | 0.7528        | 0.9006                 | 0.8701                | 0.9563              | 0.7578           | 0.9817       | 0.9151          | 0.7248         | 0.9787       | 0.9052         | 0.9474       | 0.8130         | 0.7913              | 0.8603           | 0.9815   | 0.8545       | 0.9147       | 0.6437   | 0.5660    | 0.5541   | 0.6132            | 0.7441           | 0.9176         | 0.6410      | 0.9440  | 0.7493     | 0.5356    | 0.9394  | 0.7897    | 0.8492  | 0.7631    | 0.5436         | 0.7285      |
| 0.5894        | 1.8817 | 700  | 0.5636          | 0.7371   | 0.8666        | 0.9543           | 0.9869        | 0.9263            | 0.9460            | 0.7916        | 0.6749         | 0.7552        | 0.8802                 | 0.8670                | 0.9504              | 0.8268           | 0.9835       | 0.9047          | 0.7147         | 0.9759       | 0.8055         | 0.9644       | 0.7929         | 0.8427              | 0.8767           | 0.9815   | 0.8548       | 0.9136       | 0.6382   | 0.5519    | 0.5478   | 0.6420            | 0.7505           | 0.9150         | 0.6215      | 0.9411  | 0.7632     | 0.5342    | 0.9389  | 0.7291    | 0.7657  | 0.7170    | 0.4891         | 0.7087      |
| 0.5715        | 2.1505 | 800  | 0.5679          | 0.7431   | 0.8700        | 0.9549           | 0.9862        | 0.9338            | 0.9460            | 0.7668        | 0.7404         | 0.7456        | 0.8754                 | 0.8627                | 0.9608              | 0.7677           | 0.9812       | 0.8570          | 0.8195         | 0.9624       | 0.8757         | 0.9346       | 0.9068         | 0.7152              | 0.8921           | 0.9817   | 0.8523       | 0.9154       | 0.6357   | 0.5846    | 0.5438   | 0.6327            | 0.7417           | 0.9165         | 0.6558      | 0.9434  | 0.7518     | 0.4961    | 0.9354  | 0.6757    | 0.8227  | 0.7332    | 0.5868         | 0.7143      |
| 0.6365        | 2.4194 | 900  | 0.5647          | 0.7432   | 0.8610        | 0.9548           | 0.9870        | 0.9341            | 0.9505            | 0.6885        | 0.6909         | 0.7165        | 0.8781                 | 0.8895                | 0.9547              | 0.7721           | 0.9881       | 0.8999          | 0.7258         | 0.9706       | 0.8670         | 0.9193       | 0.9065         | 0.7449              | 0.8744           | 0.9820   | 0.8544       | 0.9128       | 0.5677   | 0.5229    | 0.5553   | 0.6414            | 0.7557           | 0.9180         | 0.6489      | 0.9289  | 0.7704     | 0.5566    | 0.9367  | 0.7645    | 0.8216  | 0.7082    | 0.5442         | 0.7298      |
| 0.6795        | 2.6882 | 1000 | 0.5673          | 0.7301   | 0.8648        | 0.9525           | 0.9838        | 0.9305            | 0.9489            | 0.6736        | 0.7227         | 0.7042        | 0.9196                 | 0.8746                | 0.9526              | 0.7629           | 0.9884       | 0.8850          | 0.7949         | 0.9674       | 0.8915         | 0.9001       | 0.8440         | 0.7920              | 0.8939           | 0.9788   | 0.8417       | 0.9104       | 0.5765   | 0.5507    | 0.5537   | 0.5471            | 0.7434           | 0.9160         | 0.6141      | 0.9285  | 0.7561     | 0.5163    | 0.9338  | 0.7324    | 0.8068  | 0.7732    | 0.4745         | 0.7187      |
| 0.6517        | 2.9570 | 1100 | 0.5647          | 0.7173   | 0.8507        | 0.9512           | 0.9836        | 0.9402            | 0.9490            | 0.7080        | 0.6173         | 0.7459        | 0.8519                 | 0.8803                | 0.9454              | 0.7947           | 0.9821       | 0.8759          | 0.7743         | 0.9645       | 0.9189         | 0.9356       | 0.7035         | 0.7064              | 0.8856           | 0.9796   | 0.8370       | 0.9103       | 0.5719   | 0.5054    | 0.5426   | 0.6418            | 0.7274           | 0.9125         | 0.5885      | 0.9426  | 0.7510     | 0.5055    | 0.9346  | 0.7204    | 0.7279  | 0.6447    | 0.4707         | 0.7137      |
| 0.6038        | 3.2258 | 1200 | 0.5645          | 0.7330   | 0.8552        | 0.9526           | 0.9843        | 0.9456            | 0.9536            | 0.7353        | 0.7254         | 0.7528        | 0.8507                 | 0.8675                | 0.9411              | 0.7901           | 0.9830       | 0.8741          | 0.7417         | 0.9695       | 0.7350         | 0.8992       | 0.8817         | 0.7758              | 0.8421           | 0.9799   | 0.8397       | 0.9131       | 0.6145   | 0.5277    | 0.5483   | 0.6496            | 0.7479           | 0.9124         | 0.5919      | 0.9413  | 0.7624     | 0.5452    | 0.9372  | 0.6455    | 0.7698  | 0.7256    | 0.5486         | 0.7257      |
| 0.6218        | 3.4946 | 1300 | 0.5641          | 0.7224   | 0.8571        | 0.9524           | 0.9863        | 0.9358            | 0.9425            | 0.7547        | 0.6836         | 0.7491        | 0.8775                 | 0.8444                | 0.9505              | 0.8109           | 0.9820       | 0.9127          | 0.7426         | 0.9710       | 0.6970         | 0.9102       | 0.9148         | 0.7668              | 0.8517           | 0.9810   | 0.8483       | 0.9106       | 0.6126   | 0.5573    | 0.5396   | 0.6359            | 0.7261           | 0.9120         | 0.6001      | 0.9429  | 0.7474     | 0.5381    | 0.9369  | 0.6221    | 0.7279  | 0.6511    | 0.5116         | 0.7233      |
| 0.5334        | 3.7634 | 1400 | 0.5687          | 0.7141   | 0.8338        | 0.9518           | 0.9861        | 0.9403            | 0.9549            | 0.7046        | 0.7106         | 0.6880        | 0.8719                 | 0.8349                | 0.9442              | 0.6876           | 0.9817       | 0.8778          | 0.5796         | 0.9746       | 0.7663         | 0.9041       | 0.7933         | 0.7614              | 0.8798           | 0.9809   | 0.8418       | 0.9125       | 0.5459   | 0.5277    | 0.5466   | 0.6398            | 0.7499           | 0.9115         | 0.5282      | 0.9396  | 0.7568     | 0.4521    | 0.9319  | 0.6160    | 0.7445  | 0.6995    | 0.5142         | 0.7285      |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.1.2+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0