Nephased / README.md
Vyke2000's picture
Vyke2000/BERT_v3
780c3ab verified
metadata
library_name: transformers
license: apache-2.0
base_model: Sakonii/distilbert-base-nepali
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: BERT_Classifier_DE
    results: []

BERT_Classifier_DE

This model is a fine-tuned version of Sakonii/distilbert-base-nepali on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8645
  • Accuracy: 0.7815
  • Recall: 0.6421
  • Precision: 0.6362
  • F1: 0.6294

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.9165942005355648e-05
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.17707559519779958
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
No log 1.0 286 1.2997 0.7902 0.25 0.1976 0.2207
1.1831 2.0 572 1.0854 0.7273 0.3508 0.2747 0.2957
1.1831 3.0 858 1.0082 0.7640 0.4274 0.4180 0.3991
0.8686 4.0 1144 0.8645 0.7815 0.6421 0.6362 0.6294
0.8686 5.0 1430 0.9993 0.7483 0.5696 0.5609 0.5560
0.6366 6.0 1716 1.1232 0.7413 0.5868 0.4968 0.5287
0.4593 7.0 2002 1.5033 0.7483 0.4918 0.4888 0.4902
0.4593 8.0 2288 1.5870 0.7413 0.5122 0.4819 0.4950
0.3643 9.0 2574 2.0792 0.7255 0.4719 0.4854 0.4754

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0