detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of WKLI22/detr-resnet-50_finetuned_cppe5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3835 | 0.17 | 5 | 0.4158 |
0.4103 | 0.34 | 10 | 0.4217 |
0.4363 | 0.5 | 15 | 0.3950 |
0.3906 | 0.67 | 20 | 0.4011 |
0.3773 | 0.84 | 25 | 0.4191 |
0.4286 | 1.01 | 30 | 0.4231 |
0.4122 | 1.17 | 35 | 0.3977 |
0.3845 | 1.34 | 40 | 0.3812 |
0.4228 | 1.51 | 45 | 0.3750 |
0.4139 | 1.68 | 50 | 0.4094 |
0.433 | 1.84 | 55 | 0.3887 |
0.3752 | 2.01 | 60 | 0.4064 |
0.3835 | 2.18 | 65 | 0.3992 |
0.3756 | 2.35 | 70 | 0.3898 |
0.3918 | 2.52 | 75 | 0.3946 |
0.3715 | 2.68 | 80 | 0.3972 |
0.379 | 2.85 | 85 | 0.3951 |
0.4104 | 3.02 | 90 | 0.3926 |
0.3769 | 3.19 | 95 | 0.3888 |
0.3807 | 3.35 | 100 | 0.3956 |
0.3737 | 3.52 | 105 | 0.3989 |
0.3634 | 3.69 | 110 | 0.3978 |
0.3922 | 3.86 | 115 | 0.4041 |
0.3768 | 4.03 | 120 | 0.3846 |
0.4015 | 4.19 | 125 | 0.3973 |
0.3655 | 4.36 | 130 | 0.3879 |
0.3934 | 4.53 | 135 | 0.3775 |
0.3586 | 4.7 | 140 | 0.3851 |
0.3628 | 4.86 | 145 | 0.3785 |
0.3859 | 5.03 | 150 | 0.3922 |
0.3938 | 5.2 | 155 | 0.3982 |
0.3766 | 5.37 | 160 | 0.3923 |
0.3622 | 5.53 | 165 | 0.3960 |
0.3632 | 5.7 | 170 | 0.4003 |
0.3569 | 5.87 | 175 | 0.3924 |
0.3461 | 6.04 | 180 | 0.3972 |
0.3745 | 6.21 | 185 | 0.3938 |
0.358 | 6.37 | 190 | 0.3952 |
0.3671 | 6.54 | 195 | 0.3964 |
0.3605 | 6.71 | 200 | 0.4059 |
0.3764 | 6.88 | 205 | 0.4024 |
0.3477 | 7.04 | 210 | 0.3999 |
0.3493 | 7.21 | 215 | 0.3952 |
0.4103 | 7.38 | 220 | 0.4001 |
0.3693 | 7.55 | 225 | 0.3965 |
0.3892 | 7.71 | 230 | 0.4026 |
0.3719 | 7.88 | 235 | 0.3945 |
0.3793 | 8.05 | 240 | 0.3907 |
0.3563 | 8.22 | 245 | 0.3937 |
0.3361 | 8.39 | 250 | 0.3896 |
0.3563 | 8.55 | 255 | 0.3968 |
0.3482 | 8.72 | 260 | 0.3953 |
0.3511 | 8.89 | 265 | 0.3808 |
0.3654 | 9.06 | 270 | 0.3754 |
0.3315 | 9.22 | 275 | 0.3946 |
0.3416 | 9.39 | 280 | 0.3812 |
0.3527 | 9.56 | 285 | 0.3842 |
0.3568 | 9.73 | 290 | 0.3888 |
0.3502 | 9.9 | 295 | 0.3798 |
0.3676 | 10.06 | 300 | 0.3886 |
0.3288 | 10.23 | 305 | 0.3976 |
0.3465 | 10.4 | 310 | 0.3919 |
0.329 | 10.57 | 315 | 0.3894 |
0.3413 | 10.73 | 320 | 0.3877 |
0.3315 | 10.9 | 325 | 0.3942 |
0.3336 | 11.07 | 330 | 0.3885 |
0.3203 | 11.24 | 335 | 0.3879 |
0.3331 | 11.4 | 340 | 0.3878 |
0.3562 | 11.57 | 345 | 0.3810 |
0.3262 | 11.74 | 350 | 0.3787 |
0.3185 | 11.91 | 355 | 0.3902 |
0.353 | 12.08 | 360 | 0.3885 |
0.3388 | 12.24 | 365 | 0.3842 |
0.3158 | 12.41 | 370 | 0.3809 |
0.3596 | 12.58 | 375 | 0.3876 |
0.342 | 12.75 | 380 | 0.3796 |
0.3295 | 12.91 | 385 | 0.3781 |
0.3154 | 13.08 | 390 | 0.3837 |
0.3233 | 13.25 | 395 | 0.3765 |
0.3314 | 13.42 | 400 | 0.3813 |
0.3291 | 13.58 | 405 | 0.3813 |
0.3334 | 13.75 | 410 | 0.3625 |
0.3392 | 13.92 | 415 | 0.3600 |
0.3053 | 14.09 | 420 | 0.3637 |
0.3501 | 14.26 | 425 | 0.3567 |
0.3426 | 14.42 | 430 | 0.3775 |
0.3581 | 14.59 | 435 | 0.3658 |
0.3177 | 14.76 | 440 | 0.3840 |
0.3241 | 14.93 | 445 | 0.3802 |
0.3206 | 15.09 | 450 | 0.3903 |
0.3341 | 15.26 | 455 | 0.3749 |
0.3388 | 15.43 | 460 | 0.3735 |
0.3353 | 15.6 | 465 | 0.3718 |
0.341 | 15.77 | 470 | 0.3808 |
0.3471 | 15.93 | 475 | 0.3911 |
0.332 | 16.1 | 480 | 0.3900 |
0.3132 | 16.27 | 485 | 0.3883 |
0.3307 | 16.44 | 490 | 0.3899 |
0.3014 | 16.6 | 495 | 0.3757 |
0.3271 | 16.77 | 500 | 0.3730 |
0.3324 | 16.94 | 505 | 0.3678 |
0.3203 | 17.11 | 510 | 0.3603 |
0.3192 | 17.27 | 515 | 0.3727 |
0.3281 | 17.44 | 520 | 0.4148 |
0.3302 | 17.61 | 525 | 0.3644 |
0.3109 | 17.78 | 530 | 0.3890 |
0.3606 | 17.95 | 535 | 0.3812 |
0.306 | 18.11 | 540 | 0.3622 |
0.3249 | 18.28 | 545 | 0.3559 |
0.3179 | 18.45 | 550 | 0.3595 |
0.3018 | 18.62 | 555 | 0.3686 |
0.2852 | 18.78 | 560 | 0.3501 |
0.3306 | 18.95 | 565 | 0.3684 |
0.294 | 19.12 | 570 | 0.3661 |
0.3103 | 19.29 | 575 | 0.3662 |
0.3123 | 19.45 | 580 | 0.3397 |
0.292 | 19.62 | 585 | 0.3691 |
0.3186 | 19.79 | 590 | 0.3758 |
0.3062 | 19.96 | 595 | 0.3509 |
0.292 | 20.13 | 600 | 0.3803 |
0.3363 | 20.29 | 605 | 0.3527 |
0.3067 | 20.46 | 610 | 0.3611 |
0.317 | 20.63 | 615 | 0.3676 |
0.3043 | 20.8 | 620 | 0.3676 |
0.3642 | 20.96 | 625 | 0.3785 |
0.3279 | 21.13 | 630 | 0.3957 |
0.3208 | 21.3 | 635 | 0.3788 |
0.3425 | 21.47 | 640 | 0.3791 |
0.2832 | 21.64 | 645 | 0.3816 |
0.3149 | 21.8 | 650 | 0.3693 |
0.312 | 21.97 | 655 | 0.3709 |
0.3276 | 22.14 | 660 | 0.3710 |
0.2862 | 22.31 | 665 | 0.3742 |
0.3234 | 22.47 | 670 | 0.3776 |
0.2984 | 22.64 | 675 | 0.3933 |
0.3204 | 22.81 | 680 | 0.3827 |
0.3107 | 22.98 | 685 | 0.3850 |
0.2908 | 23.14 | 690 | 0.3780 |
0.3171 | 23.31 | 695 | 0.3785 |
0.3248 | 23.48 | 700 | 0.3671 |
0.3164 | 23.65 | 705 | 0.3646 |
0.3249 | 23.82 | 710 | 0.3652 |
0.3001 | 23.98 | 715 | 0.3621 |
0.3039 | 24.15 | 720 | 0.3743 |
0.2927 | 24.32 | 725 | 0.3740 |
0.2946 | 24.49 | 730 | 0.4031 |
0.3636 | 24.65 | 735 | 0.3715 |
0.2915 | 24.82 | 740 | 0.3737 |
0.3202 | 24.99 | 745 | 0.3805 |
0.2904 | 25.16 | 750 | 0.3841 |
0.3031 | 25.32 | 755 | 0.3907 |
0.2904 | 25.49 | 760 | 0.3709 |
0.3098 | 25.66 | 765 | 0.3806 |
0.297 | 25.83 | 770 | 0.3782 |
0.3062 | 26.0 | 775 | 0.3918 |
0.2856 | 26.16 | 780 | 0.3835 |
0.3209 | 26.33 | 785 | 0.4070 |
0.2959 | 26.5 | 790 | 0.3846 |
0.2812 | 26.67 | 795 | 0.3867 |
0.3027 | 26.83 | 800 | 0.3684 |
0.2942 | 27.0 | 805 | 0.3708 |
0.2754 | 27.17 | 810 | 0.3468 |
0.31 | 27.34 | 815 | 0.3463 |
0.3064 | 27.51 | 820 | 0.3296 |
0.2953 | 27.67 | 825 | 0.3416 |
0.3252 | 27.84 | 830 | 0.3556 |
0.2949 | 28.01 | 835 | 0.3662 |
0.3144 | 28.18 | 840 | 0.3682 |
0.3045 | 28.34 | 845 | 0.3501 |
0.3298 | 28.51 | 850 | 0.3645 |
0.2961 | 28.68 | 855 | 0.3744 |
0.317 | 28.85 | 860 | 0.3807 |
0.3213 | 29.01 | 865 | 0.3620 |
0.297 | 29.18 | 870 | 0.3657 |
0.3132 | 29.35 | 875 | 0.3635 |
0.3002 | 29.52 | 880 | 0.3697 |
0.2904 | 29.69 | 885 | 0.3600 |
0.2853 | 29.85 | 890 | 0.3670 |
0.3265 | 30.02 | 895 | 0.3693 |
0.2964 | 30.19 | 900 | 0.3586 |
0.2842 | 30.36 | 905 | 0.3550 |
0.3038 | 30.52 | 910 | 0.3686 |
0.2875 | 30.69 | 915 | 0.3705 |
0.2871 | 30.86 | 920 | 0.3586 |
0.311 | 31.03 | 925 | 0.3527 |
0.2813 | 31.19 | 930 | 0.3532 |
0.3227 | 31.36 | 935 | 0.3600 |
0.3063 | 31.53 | 940 | 0.3743 |
0.2929 | 31.7 | 945 | 0.3557 |
0.2946 | 31.87 | 950 | 0.3723 |
0.3161 | 32.03 | 955 | 0.3578 |
0.3067 | 32.2 | 960 | 0.3735 |
0.3052 | 32.37 | 965 | 0.3584 |
0.2924 | 32.54 | 970 | 0.3587 |
0.3011 | 32.7 | 975 | 0.3923 |
0.2727 | 32.87 | 980 | 0.3645 |
0.3052 | 33.04 | 985 | 0.3843 |
0.2859 | 33.21 | 990 | 0.3675 |
0.3002 | 33.38 | 995 | 0.3703 |
0.2814 | 33.54 | 1000 | 0.3718 |
0.2935 | 33.71 | 1005 | 0.3766 |
0.3045 | 33.88 | 1010 | 0.3943 |
0.3116 | 34.05 | 1015 | 0.3996 |
0.288 | 34.21 | 1020 | 0.3897 |
0.2894 | 34.38 | 1025 | 0.3844 |
0.2773 | 34.55 | 1030 | 0.3639 |
0.2785 | 34.72 | 1035 | 0.3808 |
0.2973 | 34.88 | 1040 | 0.3832 |
0.2746 | 35.05 | 1045 | 0.3745 |
0.27 | 35.22 | 1050 | 0.3754 |
0.2895 | 35.39 | 1055 | 0.3727 |
0.3008 | 35.56 | 1060 | 0.3589 |
0.2808 | 35.72 | 1065 | 0.3617 |
0.2991 | 35.89 | 1070 | 0.3672 |
0.2941 | 36.06 | 1075 | 0.3735 |
0.2722 | 36.23 | 1080 | 0.3621 |
0.3002 | 36.39 | 1085 | 0.3759 |
0.2851 | 36.56 | 1090 | 0.3666 |
0.2832 | 36.73 | 1095 | 0.3617 |
0.2979 | 36.9 | 1100 | 0.3736 |
0.3136 | 37.06 | 1105 | 0.3755 |
0.2867 | 37.23 | 1110 | 0.3634 |
0.2891 | 37.4 | 1115 | 0.3671 |
0.2947 | 37.57 | 1120 | 0.3772 |
0.2812 | 37.74 | 1125 | 0.3647 |
0.2958 | 37.9 | 1130 | 0.3618 |
0.2829 | 38.07 | 1135 | 0.3812 |
0.3064 | 38.24 | 1140 | 0.3684 |
0.2851 | 38.41 | 1145 | 0.3865 |
0.2888 | 38.57 | 1150 | 0.3849 |
0.2772 | 38.74 | 1155 | 0.3930 |
0.287 | 38.91 | 1160 | 0.3837 |
0.3077 | 39.08 | 1165 | 0.3699 |
0.2701 | 39.25 | 1170 | 0.3682 |
0.2651 | 39.41 | 1175 | 0.3711 |
0.2935 | 39.58 | 1180 | 0.3974 |
0.2804 | 39.75 | 1185 | 0.3863 |
0.28 | 39.92 | 1190 | 0.4039 |
0.2836 | 40.08 | 1195 | 0.3900 |
0.2942 | 40.25 | 1200 | 0.3921 |
0.2881 | 40.42 | 1205 | 0.3855 |
0.2975 | 40.59 | 1210 | 0.3711 |
0.2975 | 40.75 | 1215 | 0.3805 |
0.2637 | 40.92 | 1220 | 0.4088 |
0.2761 | 41.09 | 1225 | 0.4052 |
0.2966 | 41.26 | 1230 | 0.3882 |
0.2699 | 41.43 | 1235 | 0.3987 |
0.286 | 41.59 | 1240 | 0.3958 |
0.284 | 41.76 | 1245 | 0.4042 |
0.2769 | 41.93 | 1250 | 0.3995 |
0.2868 | 42.1 | 1255 | 0.3761 |
0.2869 | 42.26 | 1260 | 0.3920 |
0.2953 | 42.43 | 1265 | 0.3869 |
0.2647 | 42.6 | 1270 | 0.4168 |
0.2737 | 42.77 | 1275 | 0.3879 |
0.2812 | 42.94 | 1280 | 0.3931 |
0.2703 | 43.1 | 1285 | 0.3889 |
0.291 | 43.27 | 1290 | 0.3878 |
0.2685 | 43.44 | 1295 | 0.3952 |
0.2924 | 43.61 | 1300 | 0.4158 |
0.2634 | 43.77 | 1305 | 0.3948 |
0.2759 | 43.94 | 1310 | 0.3899 |
0.263 | 44.11 | 1315 | 0.3930 |
0.2747 | 44.28 | 1320 | 0.4066 |
0.2842 | 44.44 | 1325 | 0.4001 |
0.2615 | 44.61 | 1330 | 0.3745 |
0.2787 | 44.78 | 1335 | 0.3675 |
0.2945 | 44.95 | 1340 | 0.4024 |
0.2693 | 45.12 | 1345 | 0.4002 |
0.2727 | 45.28 | 1350 | 0.3880 |
0.2724 | 45.45 | 1355 | 0.3729 |
0.2856 | 45.62 | 1360 | 0.3974 |
0.2719 | 45.79 | 1365 | 0.3912 |
0.2842 | 45.95 | 1370 | 0.3626 |
0.2575 | 46.12 | 1375 | 0.4222 |
0.2742 | 46.29 | 1380 | 0.3857 |
0.3015 | 46.46 | 1385 | 0.3772 |
0.2805 | 46.62 | 1390 | 0.4026 |
0.2793 | 46.79 | 1395 | 0.3862 |
0.2735 | 46.96 | 1400 | 0.3896 |
0.2915 | 47.13 | 1405 | 0.3672 |
0.2783 | 47.3 | 1410 | 0.3856 |
0.2799 | 47.46 | 1415 | 0.3663 |
0.2631 | 47.63 | 1420 | 0.3861 |
0.261 | 47.8 | 1425 | 0.3760 |
0.2928 | 47.97 | 1430 | 0.4153 |
0.2955 | 48.13 | 1435 | 0.3910 |
0.2751 | 48.3 | 1440 | 0.3880 |
0.3071 | 48.47 | 1445 | 0.3855 |
0.2908 | 48.64 | 1450 | 0.3677 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for WKLI22/detr-resnet-50_finetuned_cppe5
Unable to build the model tree, the base model loops to the model itself. Learn more.