metadata
library_name: transformers
license: apache-2.0
base_model: Salama1429/KalemaTech-Arabic-STT-ASR-based-on-Whisper-Small
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-smal-ar-testing-kale
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: None
args: default
metrics:
- name: Wer
type: wer
value: 307.8198198198198
whisper-smal-ar-testing-kale
This model is a fine-tuned version of Salama1429/KalemaTech-Arabic-STT-ASR-based-on-Whisper-Small on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.6230
- Wer: 307.8198
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.6566 | 0.0032 | 2 | 2.6230 | 307.8198 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1