https://github.com/zejunwang1/bloom_tuning
可以通过如下代码调用 bloom-396m-chat 模型来生成对话:
from transformers import BloomTokenizerFast, BloomForCausalLM
model_name_or_path = "WangZeJun/bloom-396m-chat"
tokenizer = BloomTokenizerFast.from_pretrained(model_name_or_path)
model = BloomForCausalLM.from_pretrained(model_name_or_path).cuda()
model = model.eval()
input_pattern = "{}</s>"
text = "你好"
input_ids = tokenizer(input_pattern.format(text), return_tensors="pt").input_ids
input_ids = input_ids.cuda()
outputs = model.generate(input_ids, do_sample=True, max_new_tokens=1024, top_p=0.85,
temperature=0.3, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id)
input_ids_len = input_ids.size(1)
response_ids = outputs[0][input_ids_len:]
response = tokenizer.decode(response_ids)
print(response)
- Downloads last month
- 141
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.