https://github.com/zejunwang1/bloom_tuning

可以通过如下代码调用 bloom-396m-chat 模型来生成对话:

from transformers import BloomTokenizerFast, BloomForCausalLM

model_name_or_path = "WangZeJun/bloom-396m-chat"

tokenizer = BloomTokenizerFast.from_pretrained(model_name_or_path)
model = BloomForCausalLM.from_pretrained(model_name_or_path).cuda()
model = model.eval()

input_pattern = "{}</s>"
text = "你好"
input_ids = tokenizer(input_pattern.format(text), return_tensors="pt").input_ids
input_ids = input_ids.cuda()

outputs = model.generate(input_ids, do_sample=True, max_new_tokens=1024, top_p=0.85,
    temperature=0.3, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id)

input_ids_len = input_ids.size(1)
response_ids = outputs[0][input_ids_len:]
response = tokenizer.decode(response_ids)
print(response)
Downloads last month
141
Safetensors
Model size
350M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.