metadata
license: mit
library_name: mlx
datasets:
- R2E-Gym/R2E-Gym-Subset
language:
- en
base_model: agentica-org/DeepSWE-Preview
pipeline_tag: text-generation
tags:
- mlx
WaveCut/DeepSWE-Preview_MLX-8bit
This model WaveCut/DeepSWE-Preview_MLX-8bit was converted to MLX format from agentica-org/DeepSWE-Preview using mlx-lm version 0.25.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("WaveCut/DeepSWE-Preview_MLX-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)