llama3-dpo-lora / README.md
Wenboz's picture
End of training
797a0f9 verified
|
raw
history blame
3.73 kB
metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: llama3-dpo-lora
    results: []

llama3-dpo-lora

This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5199
  • Rewards/chosen: -0.1477
  • Rewards/rejected: -0.9502
  • Rewards/accuracies: 0.7260
  • Rewards/margins: 0.8025
  • Logps/rejected: -283.9596
  • Logps/chosen: -291.2388
  • Logits/rejected: -0.3914
  • Logits/chosen: -0.4217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6297 0.1047 100 0.6140 0.1358 -0.1277 0.6960 0.2634 -275.7340 -288.4034 -0.5479 -0.5526
0.5676 0.2094 200 0.5569 -0.1144 -0.6599 0.7000 0.5455 -281.0560 -290.9051 -0.4945 -0.5116
0.5414 0.3141 300 0.5403 -0.3808 -1.0461 0.7260 0.6652 -284.9180 -293.5698 -0.4540 -0.4775
0.5124 0.4187 400 0.5341 -0.2337 -0.9896 0.7040 0.7559 -284.3532 -292.0986 -0.4243 -0.4516
0.5529 0.5234 500 0.5260 -0.2177 -1.0037 0.7240 0.7861 -284.4948 -291.9380 -0.3995 -0.4290
0.53 0.6281 600 0.5244 -0.0687 -0.8583 0.7200 0.7895 -283.0403 -290.4489 -0.4028 -0.4317
0.5028 0.7328 700 0.5190 -0.3357 -1.1360 0.7320 0.8003 -285.8177 -293.1184 -0.3874 -0.4179
0.5347 0.8375 800 0.5191 -0.1404 -0.9419 0.7320 0.8015 -283.8760 -291.1650 -0.3924 -0.4225
0.4783 0.9422 900 0.5190 -0.1399 -0.9459 0.7260 0.8060 -283.9163 -291.1600 -0.3917 -0.4219

Framework versions

  • PEFT 0.7.1
  • Transformers 4.44.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1