UAE-Large-V1 / README.md
Xenova's picture
Xenova HF staff
Add transformers.js tag
c0c2183
|
raw
history blame
64.1 kB
metadata
tags:
  - mteb
  - sentence_embedding
  - feature_extraction
  - transformers.js
model-index:
  - name: UAE-Large-V1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 75.55223880597015
          - type: ap
            value: 38.264070815317794
          - type: f1
            value: 69.40977934769845
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 92.84267499999999
          - type: ap
            value: 89.57568507997713
          - type: f1
            value: 92.82590734337774
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 48.292
          - type: f1
            value: 47.90257816032778
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.105
          - type: map_at_10
            value: 58.181000000000004
          - type: map_at_100
            value: 58.653999999999996
          - type: map_at_1000
            value: 58.657000000000004
          - type: map_at_3
            value: 54.386
          - type: map_at_5
            value: 56.757999999999996
          - type: mrr_at_1
            value: 42.745
          - type: mrr_at_10
            value: 58.437
          - type: mrr_at_100
            value: 58.894999999999996
          - type: mrr_at_1000
            value: 58.897999999999996
          - type: mrr_at_3
            value: 54.635
          - type: mrr_at_5
            value: 56.99999999999999
          - type: ndcg_at_1
            value: 42.105
          - type: ndcg_at_10
            value: 66.14999999999999
          - type: ndcg_at_100
            value: 68.048
          - type: ndcg_at_1000
            value: 68.11399999999999
          - type: ndcg_at_3
            value: 58.477000000000004
          - type: ndcg_at_5
            value: 62.768
          - type: precision_at_1
            value: 42.105
          - type: precision_at_10
            value: 9.110999999999999
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 23.447000000000003
          - type: precision_at_5
            value: 16.159000000000002
          - type: recall_at_1
            value: 42.105
          - type: recall_at_10
            value: 91.11
          - type: recall_at_100
            value: 99.14699999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 70.341
          - type: recall_at_5
            value: 80.797
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 49.02580759154173
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.093601280163554
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 64.19590406875427
          - type: mrr
            value: 77.09547992788991
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.86678362843676
          - type: cos_sim_spearman
            value: 86.1423242570783
          - type: euclidean_pearson
            value: 85.98994198511751
          - type: euclidean_spearman
            value: 86.48209103503942
          - type: manhattan_pearson
            value: 85.6446436316182
          - type: manhattan_spearman
            value: 86.21039809734357
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.69155844155844
          - type: f1
            value: 87.68109381943547
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.37501687500394
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 37.23401405155885
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.232
          - type: map_at_10
            value: 41.404999999999994
          - type: map_at_100
            value: 42.896
          - type: map_at_1000
            value: 43.028
          - type: map_at_3
            value: 37.925
          - type: map_at_5
            value: 39.865
          - type: mrr_at_1
            value: 36.338
          - type: mrr_at_10
            value: 46.969
          - type: mrr_at_100
            value: 47.684
          - type: mrr_at_1000
            value: 47.731
          - type: mrr_at_3
            value: 44.063
          - type: mrr_at_5
            value: 45.908
          - type: ndcg_at_1
            value: 36.338
          - type: ndcg_at_10
            value: 47.887
          - type: ndcg_at_100
            value: 53.357
          - type: ndcg_at_1000
            value: 55.376999999999995
          - type: ndcg_at_3
            value: 42.588
          - type: ndcg_at_5
            value: 45.132
          - type: precision_at_1
            value: 36.338
          - type: precision_at_10
            value: 9.17
          - type: precision_at_100
            value: 1.4909999999999999
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 20.315
          - type: precision_at_5
            value: 14.793000000000001
          - type: recall_at_1
            value: 30.232
          - type: recall_at_10
            value: 60.67399999999999
          - type: recall_at_100
            value: 83.628
          - type: recall_at_1000
            value: 96.209
          - type: recall_at_3
            value: 45.48
          - type: recall_at_5
            value: 52.354
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.237
          - type: map_at_10
            value: 42.829
          - type: map_at_100
            value: 44.065
          - type: map_at_1000
            value: 44.199
          - type: map_at_3
            value: 39.885999999999996
          - type: map_at_5
            value: 41.55
          - type: mrr_at_1
            value: 40.064
          - type: mrr_at_10
            value: 48.611
          - type: mrr_at_100
            value: 49.245
          - type: mrr_at_1000
            value: 49.29
          - type: mrr_at_3
            value: 46.561
          - type: mrr_at_5
            value: 47.771
          - type: ndcg_at_1
            value: 40.064
          - type: ndcg_at_10
            value: 48.388
          - type: ndcg_at_100
            value: 52.666999999999994
          - type: ndcg_at_1000
            value: 54.67100000000001
          - type: ndcg_at_3
            value: 44.504
          - type: ndcg_at_5
            value: 46.303
          - type: precision_at_1
            value: 40.064
          - type: precision_at_10
            value: 9.051
          - type: precision_at_100
            value: 1.4500000000000002
          - type: precision_at_1000
            value: 0.193
          - type: precision_at_3
            value: 21.444
          - type: precision_at_5
            value: 15.045
          - type: recall_at_1
            value: 32.237
          - type: recall_at_10
            value: 57.943999999999996
          - type: recall_at_100
            value: 75.98700000000001
          - type: recall_at_1000
            value: 88.453
          - type: recall_at_3
            value: 46.268
          - type: recall_at_5
            value: 51.459999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.797
          - type: map_at_10
            value: 51.263000000000005
          - type: map_at_100
            value: 52.333
          - type: map_at_1000
            value: 52.393
          - type: map_at_3
            value: 47.936
          - type: map_at_5
            value: 49.844
          - type: mrr_at_1
            value: 44.389
          - type: mrr_at_10
            value: 54.601
          - type: mrr_at_100
            value: 55.300000000000004
          - type: mrr_at_1000
            value: 55.333
          - type: mrr_at_3
            value: 52.068999999999996
          - type: mrr_at_5
            value: 53.627
          - type: ndcg_at_1
            value: 44.389
          - type: ndcg_at_10
            value: 57.193000000000005
          - type: ndcg_at_100
            value: 61.307
          - type: ndcg_at_1000
            value: 62.529
          - type: ndcg_at_3
            value: 51.607
          - type: ndcg_at_5
            value: 54.409
          - type: precision_at_1
            value: 44.389
          - type: precision_at_10
            value: 9.26
          - type: precision_at_100
            value: 1.222
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 23.03
          - type: precision_at_5
            value: 15.887
          - type: recall_at_1
            value: 38.797
          - type: recall_at_10
            value: 71.449
          - type: recall_at_100
            value: 88.881
          - type: recall_at_1000
            value: 97.52
          - type: recall_at_3
            value: 56.503
          - type: recall_at_5
            value: 63.392
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.291999999999998
          - type: map_at_10
            value: 35.65
          - type: map_at_100
            value: 36.689
          - type: map_at_1000
            value: 36.753
          - type: map_at_3
            value: 32.995000000000005
          - type: map_at_5
            value: 34.409
          - type: mrr_at_1
            value: 29.04
          - type: mrr_at_10
            value: 37.486000000000004
          - type: mrr_at_100
            value: 38.394
          - type: mrr_at_1000
            value: 38.445
          - type: mrr_at_3
            value: 35.028
          - type: mrr_at_5
            value: 36.305
          - type: ndcg_at_1
            value: 29.04
          - type: ndcg_at_10
            value: 40.613
          - type: ndcg_at_100
            value: 45.733000000000004
          - type: ndcg_at_1000
            value: 47.447
          - type: ndcg_at_3
            value: 35.339999999999996
          - type: ndcg_at_5
            value: 37.706
          - type: precision_at_1
            value: 29.04
          - type: precision_at_10
            value: 6.192
          - type: precision_at_100
            value: 0.9249999999999999
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 14.802000000000001
          - type: precision_at_5
            value: 10.305
          - type: recall_at_1
            value: 27.291999999999998
          - type: recall_at_10
            value: 54.25299999999999
          - type: recall_at_100
            value: 77.773
          - type: recall_at_1000
            value: 90.795
          - type: recall_at_3
            value: 39.731
          - type: recall_at_5
            value: 45.403999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.326
          - type: map_at_10
            value: 26.290999999999997
          - type: map_at_100
            value: 27.456999999999997
          - type: map_at_1000
            value: 27.583000000000002
          - type: map_at_3
            value: 23.578
          - type: map_at_5
            value: 25.113000000000003
          - type: mrr_at_1
            value: 22.637
          - type: mrr_at_10
            value: 31.139
          - type: mrr_at_100
            value: 32.074999999999996
          - type: mrr_at_1000
            value: 32.147
          - type: mrr_at_3
            value: 28.483000000000004
          - type: mrr_at_5
            value: 29.963
          - type: ndcg_at_1
            value: 22.637
          - type: ndcg_at_10
            value: 31.717000000000002
          - type: ndcg_at_100
            value: 37.201
          - type: ndcg_at_1000
            value: 40.088
          - type: ndcg_at_3
            value: 26.686
          - type: ndcg_at_5
            value: 29.076999999999998
          - type: precision_at_1
            value: 22.637
          - type: precision_at_10
            value: 5.7090000000000005
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 12.894
          - type: precision_at_5
            value: 9.328
          - type: recall_at_1
            value: 18.326
          - type: recall_at_10
            value: 43.824999999999996
          - type: recall_at_100
            value: 67.316
          - type: recall_at_1000
            value: 87.481
          - type: recall_at_3
            value: 29.866999999999997
          - type: recall_at_5
            value: 35.961999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.875
          - type: map_at_10
            value: 40.458
          - type: map_at_100
            value: 41.772
          - type: map_at_1000
            value: 41.882999999999996
          - type: map_at_3
            value: 37.086999999999996
          - type: map_at_5
            value: 39.153
          - type: mrr_at_1
            value: 36.381
          - type: mrr_at_10
            value: 46.190999999999995
          - type: mrr_at_100
            value: 46.983999999999995
          - type: mrr_at_1000
            value: 47.032000000000004
          - type: mrr_at_3
            value: 43.486999999999995
          - type: mrr_at_5
            value: 45.249
          - type: ndcg_at_1
            value: 36.381
          - type: ndcg_at_10
            value: 46.602
          - type: ndcg_at_100
            value: 51.885999999999996
          - type: ndcg_at_1000
            value: 53.895
          - type: ndcg_at_3
            value: 41.155
          - type: ndcg_at_5
            value: 44.182
          - type: precision_at_1
            value: 36.381
          - type: precision_at_10
            value: 8.402
          - type: precision_at_100
            value: 1.278
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 19.346
          - type: precision_at_5
            value: 14.09
          - type: recall_at_1
            value: 29.875
          - type: recall_at_10
            value: 59.065999999999995
          - type: recall_at_100
            value: 80.923
          - type: recall_at_1000
            value: 93.927
          - type: recall_at_3
            value: 44.462
          - type: recall_at_5
            value: 51.89
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.94
          - type: map_at_10
            value: 35.125
          - type: map_at_100
            value: 36.476
          - type: map_at_1000
            value: 36.579
          - type: map_at_3
            value: 31.840000000000003
          - type: map_at_5
            value: 33.647
          - type: mrr_at_1
            value: 30.936000000000003
          - type: mrr_at_10
            value: 40.637
          - type: mrr_at_100
            value: 41.471000000000004
          - type: mrr_at_1000
            value: 41.525
          - type: mrr_at_3
            value: 38.013999999999996
          - type: mrr_at_5
            value: 39.469
          - type: ndcg_at_1
            value: 30.936000000000003
          - type: ndcg_at_10
            value: 41.295
          - type: ndcg_at_100
            value: 46.92
          - type: ndcg_at_1000
            value: 49.183
          - type: ndcg_at_3
            value: 35.811
          - type: ndcg_at_5
            value: 38.306000000000004
          - type: precision_at_1
            value: 30.936000000000003
          - type: precision_at_10
            value: 7.728
          - type: precision_at_100
            value: 1.226
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 17.237
          - type: precision_at_5
            value: 12.42
          - type: recall_at_1
            value: 24.94
          - type: recall_at_10
            value: 54.235
          - type: recall_at_100
            value: 78.314
          - type: recall_at_1000
            value: 93.973
          - type: recall_at_3
            value: 38.925
          - type: recall_at_5
            value: 45.505
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.250833333333333
          - type: map_at_10
            value: 35.46875
          - type: map_at_100
            value: 36.667
          - type: map_at_1000
            value: 36.78025
          - type: map_at_3
            value: 32.56733333333334
          - type: map_at_5
            value: 34.20333333333333
          - type: mrr_at_1
            value: 30.8945
          - type: mrr_at_10
            value: 39.636833333333335
          - type: mrr_at_100
            value: 40.46508333333333
          - type: mrr_at_1000
            value: 40.521249999999995
          - type: mrr_at_3
            value: 37.140166666666666
          - type: mrr_at_5
            value: 38.60999999999999
          - type: ndcg_at_1
            value: 30.8945
          - type: ndcg_at_10
            value: 40.93441666666667
          - type: ndcg_at_100
            value: 46.062416666666664
          - type: ndcg_at_1000
            value: 48.28341666666667
          - type: ndcg_at_3
            value: 35.97575
          - type: ndcg_at_5
            value: 38.3785
          - type: precision_at_1
            value: 30.8945
          - type: precision_at_10
            value: 7.180250000000001
          - type: precision_at_100
            value: 1.1468333333333334
          - type: precision_at_1000
            value: 0.15283333333333332
          - type: precision_at_3
            value: 16.525583333333334
          - type: precision_at_5
            value: 11.798333333333332
          - type: recall_at_1
            value: 26.250833333333333
          - type: recall_at_10
            value: 52.96108333333333
          - type: recall_at_100
            value: 75.45908333333334
          - type: recall_at_1000
            value: 90.73924999999998
          - type: recall_at_3
            value: 39.25483333333333
          - type: recall_at_5
            value: 45.37950000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.595
          - type: map_at_10
            value: 31.747999999999998
          - type: map_at_100
            value: 32.62
          - type: map_at_1000
            value: 32.713
          - type: map_at_3
            value: 29.48
          - type: map_at_5
            value: 30.635
          - type: mrr_at_1
            value: 27.607
          - type: mrr_at_10
            value: 34.449000000000005
          - type: mrr_at_100
            value: 35.182
          - type: mrr_at_1000
            value: 35.254000000000005
          - type: mrr_at_3
            value: 32.413
          - type: mrr_at_5
            value: 33.372
          - type: ndcg_at_1
            value: 27.607
          - type: ndcg_at_10
            value: 36.041000000000004
          - type: ndcg_at_100
            value: 40.514
          - type: ndcg_at_1000
            value: 42.851
          - type: ndcg_at_3
            value: 31.689
          - type: ndcg_at_5
            value: 33.479
          - type: precision_at_1
            value: 27.607
          - type: precision_at_10
            value: 5.66
          - type: precision_at_100
            value: 0.868
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 13.446
          - type: precision_at_5
            value: 9.264
          - type: recall_at_1
            value: 24.595
          - type: recall_at_10
            value: 46.79
          - type: recall_at_100
            value: 67.413
          - type: recall_at_1000
            value: 84.753
          - type: recall_at_3
            value: 34.644999999999996
          - type: recall_at_5
            value: 39.09
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.333000000000002
          - type: map_at_10
            value: 24.427
          - type: map_at_100
            value: 25.576
          - type: map_at_1000
            value: 25.692999999999998
          - type: map_at_3
            value: 22.002
          - type: map_at_5
            value: 23.249
          - type: mrr_at_1
            value: 20.716
          - type: mrr_at_10
            value: 28.072000000000003
          - type: mrr_at_100
            value: 29.067
          - type: mrr_at_1000
            value: 29.137
          - type: mrr_at_3
            value: 25.832
          - type: mrr_at_5
            value: 27.045
          - type: ndcg_at_1
            value: 20.716
          - type: ndcg_at_10
            value: 29.109
          - type: ndcg_at_100
            value: 34.797
          - type: ndcg_at_1000
            value: 37.503
          - type: ndcg_at_3
            value: 24.668
          - type: ndcg_at_5
            value: 26.552999999999997
          - type: precision_at_1
            value: 20.716
          - type: precision_at_10
            value: 5.351
          - type: precision_at_100
            value: 0.955
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 11.584999999999999
          - type: precision_at_5
            value: 8.362
          - type: recall_at_1
            value: 17.333000000000002
          - type: recall_at_10
            value: 39.604
          - type: recall_at_100
            value: 65.525
          - type: recall_at_1000
            value: 84.651
          - type: recall_at_3
            value: 27.199
          - type: recall_at_5
            value: 32.019
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.342
          - type: map_at_10
            value: 35.349000000000004
          - type: map_at_100
            value: 36.443
          - type: map_at_1000
            value: 36.548
          - type: map_at_3
            value: 32.307
          - type: map_at_5
            value: 34.164
          - type: mrr_at_1
            value: 31.063000000000002
          - type: mrr_at_10
            value: 39.703
          - type: mrr_at_100
            value: 40.555
          - type: mrr_at_1000
            value: 40.614
          - type: mrr_at_3
            value: 37.141999999999996
          - type: mrr_at_5
            value: 38.812000000000005
          - type: ndcg_at_1
            value: 31.063000000000002
          - type: ndcg_at_10
            value: 40.873
          - type: ndcg_at_100
            value: 45.896
          - type: ndcg_at_1000
            value: 48.205999999999996
          - type: ndcg_at_3
            value: 35.522
          - type: ndcg_at_5
            value: 38.419
          - type: precision_at_1
            value: 31.063000000000002
          - type: precision_at_10
            value: 6.866
          - type: precision_at_100
            value: 1.053
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 16.014
          - type: precision_at_5
            value: 11.604000000000001
          - type: recall_at_1
            value: 26.342
          - type: recall_at_10
            value: 53.40200000000001
          - type: recall_at_100
            value: 75.251
          - type: recall_at_1000
            value: 91.13799999999999
          - type: recall_at_3
            value: 39.103
          - type: recall_at_5
            value: 46.357
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.71
          - type: map_at_10
            value: 32.153999999999996
          - type: map_at_100
            value: 33.821
          - type: map_at_1000
            value: 34.034
          - type: map_at_3
            value: 29.376
          - type: map_at_5
            value: 30.878
          - type: mrr_at_1
            value: 28.458
          - type: mrr_at_10
            value: 36.775999999999996
          - type: mrr_at_100
            value: 37.804
          - type: mrr_at_1000
            value: 37.858999999999995
          - type: mrr_at_3
            value: 34.123999999999995
          - type: mrr_at_5
            value: 35.596
          - type: ndcg_at_1
            value: 28.458
          - type: ndcg_at_10
            value: 37.858999999999995
          - type: ndcg_at_100
            value: 44.194
          - type: ndcg_at_1000
            value: 46.744
          - type: ndcg_at_3
            value: 33.348
          - type: ndcg_at_5
            value: 35.448
          - type: precision_at_1
            value: 28.458
          - type: precision_at_10
            value: 7.4510000000000005
          - type: precision_at_100
            value: 1.5
          - type: precision_at_1000
            value: 0.23700000000000002
          - type: precision_at_3
            value: 15.809999999999999
          - type: precision_at_5
            value: 11.462
          - type: recall_at_1
            value: 23.71
          - type: recall_at_10
            value: 48.272999999999996
          - type: recall_at_100
            value: 77.134
          - type: recall_at_1000
            value: 93.001
          - type: recall_at_3
            value: 35.480000000000004
          - type: recall_at_5
            value: 41.19
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.331
          - type: map_at_10
            value: 28.926000000000002
          - type: map_at_100
            value: 29.855999999999998
          - type: map_at_1000
            value: 29.957
          - type: map_at_3
            value: 26.395999999999997
          - type: map_at_5
            value: 27.933000000000003
          - type: mrr_at_1
            value: 23.105
          - type: mrr_at_10
            value: 31.008000000000003
          - type: mrr_at_100
            value: 31.819999999999997
          - type: mrr_at_1000
            value: 31.887999999999998
          - type: mrr_at_3
            value: 28.466
          - type: mrr_at_5
            value: 30.203000000000003
          - type: ndcg_at_1
            value: 23.105
          - type: ndcg_at_10
            value: 33.635999999999996
          - type: ndcg_at_100
            value: 38.277
          - type: ndcg_at_1000
            value: 40.907
          - type: ndcg_at_3
            value: 28.791
          - type: ndcg_at_5
            value: 31.528
          - type: precision_at_1
            value: 23.105
          - type: precision_at_10
            value: 5.323
          - type: precision_at_100
            value: 0.815
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 12.384
          - type: precision_at_5
            value: 9.02
          - type: recall_at_1
            value: 21.331
          - type: recall_at_10
            value: 46.018
          - type: recall_at_100
            value: 67.364
          - type: recall_at_1000
            value: 86.97
          - type: recall_at_3
            value: 33.395
          - type: recall_at_5
            value: 39.931
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.011000000000003
          - type: map_at_10
            value: 28.816999999999997
          - type: map_at_100
            value: 30.761
          - type: map_at_1000
            value: 30.958000000000002
          - type: map_at_3
            value: 24.044999999999998
          - type: map_at_5
            value: 26.557
          - type: mrr_at_1
            value: 38.696999999999996
          - type: mrr_at_10
            value: 50.464
          - type: mrr_at_100
            value: 51.193999999999996
          - type: mrr_at_1000
            value: 51.219
          - type: mrr_at_3
            value: 47.339999999999996
          - type: mrr_at_5
            value: 49.346000000000004
          - type: ndcg_at_1
            value: 38.696999999999996
          - type: ndcg_at_10
            value: 38.53
          - type: ndcg_at_100
            value: 45.525
          - type: ndcg_at_1000
            value: 48.685
          - type: ndcg_at_3
            value: 32.282
          - type: ndcg_at_5
            value: 34.482
          - type: precision_at_1
            value: 38.696999999999996
          - type: precision_at_10
            value: 11.895999999999999
          - type: precision_at_100
            value: 1.95
          - type: precision_at_1000
            value: 0.254
          - type: precision_at_3
            value: 24.038999999999998
          - type: precision_at_5
            value: 18.332
          - type: recall_at_1
            value: 17.011000000000003
          - type: recall_at_10
            value: 44.452999999999996
          - type: recall_at_100
            value: 68.223
          - type: recall_at_1000
            value: 85.653
          - type: recall_at_3
            value: 28.784
          - type: recall_at_5
            value: 35.66
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.516
          - type: map_at_10
            value: 21.439
          - type: map_at_100
            value: 31.517
          - type: map_at_1000
            value: 33.267
          - type: map_at_3
            value: 15.004999999999999
          - type: map_at_5
            value: 17.793999999999997
          - type: mrr_at_1
            value: 71.25
          - type: mrr_at_10
            value: 79.071
          - type: mrr_at_100
            value: 79.325
          - type: mrr_at_1000
            value: 79.33
          - type: mrr_at_3
            value: 77.708
          - type: mrr_at_5
            value: 78.546
          - type: ndcg_at_1
            value: 58.62500000000001
          - type: ndcg_at_10
            value: 44.889
          - type: ndcg_at_100
            value: 50.536
          - type: ndcg_at_1000
            value: 57.724
          - type: ndcg_at_3
            value: 49.32
          - type: ndcg_at_5
            value: 46.775
          - type: precision_at_1
            value: 71.25
          - type: precision_at_10
            value: 36.175000000000004
          - type: precision_at_100
            value: 11.940000000000001
          - type: precision_at_1000
            value: 2.178
          - type: precision_at_3
            value: 53.583000000000006
          - type: precision_at_5
            value: 45.550000000000004
          - type: recall_at_1
            value: 9.516
          - type: recall_at_10
            value: 27.028000000000002
          - type: recall_at_100
            value: 57.581
          - type: recall_at_1000
            value: 80.623
          - type: recall_at_3
            value: 16.313
          - type: recall_at_5
            value: 20.674
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 51.74999999999999
          - type: f1
            value: 46.46706502669774
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 77.266
          - type: map_at_10
            value: 84.89999999999999
          - type: map_at_100
            value: 85.109
          - type: map_at_1000
            value: 85.123
          - type: map_at_3
            value: 83.898
          - type: map_at_5
            value: 84.541
          - type: mrr_at_1
            value: 83.138
          - type: mrr_at_10
            value: 89.37
          - type: mrr_at_100
            value: 89.432
          - type: mrr_at_1000
            value: 89.43299999999999
          - type: mrr_at_3
            value: 88.836
          - type: mrr_at_5
            value: 89.21
          - type: ndcg_at_1
            value: 83.138
          - type: ndcg_at_10
            value: 88.244
          - type: ndcg_at_100
            value: 88.98700000000001
          - type: ndcg_at_1000
            value: 89.21900000000001
          - type: ndcg_at_3
            value: 86.825
          - type: ndcg_at_5
            value: 87.636
          - type: precision_at_1
            value: 83.138
          - type: precision_at_10
            value: 10.47
          - type: precision_at_100
            value: 1.1079999999999999
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 32.933
          - type: precision_at_5
            value: 20.36
          - type: recall_at_1
            value: 77.266
          - type: recall_at_10
            value: 94.063
          - type: recall_at_100
            value: 96.993
          - type: recall_at_1000
            value: 98.414
          - type: recall_at_3
            value: 90.228
          - type: recall_at_5
            value: 92.328
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.319
          - type: map_at_10
            value: 36.943
          - type: map_at_100
            value: 38.951
          - type: map_at_1000
            value: 39.114
          - type: map_at_3
            value: 32.82
          - type: map_at_5
            value: 34.945
          - type: mrr_at_1
            value: 44.135999999999996
          - type: mrr_at_10
            value: 53.071999999999996
          - type: mrr_at_100
            value: 53.87
          - type: mrr_at_1000
            value: 53.90200000000001
          - type: mrr_at_3
            value: 50.77199999999999
          - type: mrr_at_5
            value: 52.129999999999995
          - type: ndcg_at_1
            value: 44.135999999999996
          - type: ndcg_at_10
            value: 44.836
          - type: ndcg_at_100
            value: 51.754
          - type: ndcg_at_1000
            value: 54.36
          - type: ndcg_at_3
            value: 41.658
          - type: ndcg_at_5
            value: 42.354
          - type: precision_at_1
            value: 44.135999999999996
          - type: precision_at_10
            value: 12.284
          - type: precision_at_100
            value: 1.952
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 27.828999999999997
          - type: precision_at_5
            value: 20.093
          - type: recall_at_1
            value: 22.319
          - type: recall_at_10
            value: 51.528
          - type: recall_at_100
            value: 76.70700000000001
          - type: recall_at_1000
            value: 92.143
          - type: recall_at_3
            value: 38.641
          - type: recall_at_5
            value: 43.653999999999996
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.182
          - type: map_at_10
            value: 65.146
          - type: map_at_100
            value: 66.023
          - type: map_at_1000
            value: 66.078
          - type: map_at_3
            value: 61.617999999999995
          - type: map_at_5
            value: 63.82299999999999
          - type: mrr_at_1
            value: 80.365
          - type: mrr_at_10
            value: 85.79
          - type: mrr_at_100
            value: 85.963
          - type: mrr_at_1000
            value: 85.968
          - type: mrr_at_3
            value: 84.952
          - type: mrr_at_5
            value: 85.503
          - type: ndcg_at_1
            value: 80.365
          - type: ndcg_at_10
            value: 73.13499999999999
          - type: ndcg_at_100
            value: 76.133
          - type: ndcg_at_1000
            value: 77.151
          - type: ndcg_at_3
            value: 68.255
          - type: ndcg_at_5
            value: 70.978
          - type: precision_at_1
            value: 80.365
          - type: precision_at_10
            value: 15.359
          - type: precision_at_100
            value: 1.7690000000000001
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 44.024
          - type: precision_at_5
            value: 28.555999999999997
          - type: recall_at_1
            value: 40.182
          - type: recall_at_10
            value: 76.793
          - type: recall_at_100
            value: 88.474
          - type: recall_at_1000
            value: 95.159
          - type: recall_at_3
            value: 66.036
          - type: recall_at_5
            value: 71.391
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 92.7796
          - type: ap
            value: 89.24883716810874
          - type: f1
            value: 92.7706903433313
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.016
          - type: map_at_10
            value: 34.408
          - type: map_at_100
            value: 35.592
          - type: map_at_1000
            value: 35.64
          - type: map_at_3
            value: 30.459999999999997
          - type: map_at_5
            value: 32.721000000000004
          - type: mrr_at_1
            value: 22.593
          - type: mrr_at_10
            value: 34.993
          - type: mrr_at_100
            value: 36.113
          - type: mrr_at_1000
            value: 36.156
          - type: mrr_at_3
            value: 31.101
          - type: mrr_at_5
            value: 33.364
          - type: ndcg_at_1
            value: 22.579
          - type: ndcg_at_10
            value: 41.404999999999994
          - type: ndcg_at_100
            value: 47.018
          - type: ndcg_at_1000
            value: 48.211999999999996
          - type: ndcg_at_3
            value: 33.389
          - type: ndcg_at_5
            value: 37.425000000000004
          - type: precision_at_1
            value: 22.579
          - type: precision_at_10
            value: 6.59
          - type: precision_at_100
            value: 0.938
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.241000000000001
          - type: precision_at_5
            value: 10.59
          - type: recall_at_1
            value: 22.016
          - type: recall_at_10
            value: 62.927
          - type: recall_at_100
            value: 88.72
          - type: recall_at_1000
            value: 97.80799999999999
          - type: recall_at_3
            value: 41.229
          - type: recall_at_5
            value: 50.88
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.01732786137711
          - type: f1
            value: 93.76353126402202
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 76.91746466028272
          - type: f1
            value: 57.715651682646765
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 76.5030262273033
          - type: f1
            value: 74.6693629986121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 79.74781439139207
          - type: f1
            value: 79.96684171018774
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.2156206892017
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.180539484816137
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.51125957874274
          - type: mrr
            value: 33.777037359249995
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.248
          - type: map_at_10
            value: 15.340000000000002
          - type: map_at_100
            value: 19.591
          - type: map_at_1000
            value: 21.187
          - type: map_at_3
            value: 11.329
          - type: map_at_5
            value: 13.209999999999999
          - type: mrr_at_1
            value: 47.678
          - type: mrr_at_10
            value: 57.493
          - type: mrr_at_100
            value: 58.038999999999994
          - type: mrr_at_1000
            value: 58.07
          - type: mrr_at_3
            value: 55.36600000000001
          - type: mrr_at_5
            value: 56.635999999999996
          - type: ndcg_at_1
            value: 46.129999999999995
          - type: ndcg_at_10
            value: 38.653999999999996
          - type: ndcg_at_100
            value: 36.288
          - type: ndcg_at_1000
            value: 44.765
          - type: ndcg_at_3
            value: 43.553
          - type: ndcg_at_5
            value: 41.317
          - type: precision_at_1
            value: 47.368
          - type: precision_at_10
            value: 28.669
          - type: precision_at_100
            value: 9.158
          - type: precision_at_1000
            value: 2.207
          - type: precision_at_3
            value: 40.97
          - type: precision_at_5
            value: 35.604
          - type: recall_at_1
            value: 7.248
          - type: recall_at_10
            value: 19.46
          - type: recall_at_100
            value: 37.214000000000006
          - type: recall_at_1000
            value: 67.64099999999999
          - type: recall_at_3
            value: 12.025
          - type: recall_at_5
            value: 15.443999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.595000000000002
          - type: map_at_10
            value: 47.815999999999995
          - type: map_at_100
            value: 48.811
          - type: map_at_1000
            value: 48.835
          - type: map_at_3
            value: 43.225
          - type: map_at_5
            value: 46.017
          - type: mrr_at_1
            value: 35.689
          - type: mrr_at_10
            value: 50.341
          - type: mrr_at_100
            value: 51.044999999999995
          - type: mrr_at_1000
            value: 51.062
          - type: mrr_at_3
            value: 46.553
          - type: mrr_at_5
            value: 48.918
          - type: ndcg_at_1
            value: 35.66
          - type: ndcg_at_10
            value: 55.859
          - type: ndcg_at_100
            value: 59.864
          - type: ndcg_at_1000
            value: 60.419999999999995
          - type: ndcg_at_3
            value: 47.371
          - type: ndcg_at_5
            value: 51.995000000000005
          - type: precision_at_1
            value: 35.66
          - type: precision_at_10
            value: 9.27
          - type: precision_at_100
            value: 1.1520000000000001
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 21.63
          - type: precision_at_5
            value: 15.655
          - type: recall_at_1
            value: 31.595000000000002
          - type: recall_at_10
            value: 77.704
          - type: recall_at_100
            value: 94.774
          - type: recall_at_1000
            value: 98.919
          - type: recall_at_3
            value: 56.052
          - type: recall_at_5
            value: 66.623
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.489
          - type: map_at_10
            value: 85.411
          - type: map_at_100
            value: 86.048
          - type: map_at_1000
            value: 86.064
          - type: map_at_3
            value: 82.587
          - type: map_at_5
            value: 84.339
          - type: mrr_at_1
            value: 82.28
          - type: mrr_at_10
            value: 88.27199999999999
          - type: mrr_at_100
            value: 88.362
          - type: mrr_at_1000
            value: 88.362
          - type: mrr_at_3
            value: 87.372
          - type: mrr_at_5
            value: 87.995
          - type: ndcg_at_1
            value: 82.27
          - type: ndcg_at_10
            value: 89.023
          - type: ndcg_at_100
            value: 90.191
          - type: ndcg_at_1000
            value: 90.266
          - type: ndcg_at_3
            value: 86.37
          - type: ndcg_at_5
            value: 87.804
          - type: precision_at_1
            value: 82.27
          - type: precision_at_10
            value: 13.469000000000001
          - type: precision_at_100
            value: 1.533
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.797
          - type: precision_at_5
            value: 24.734
          - type: recall_at_1
            value: 71.489
          - type: recall_at_10
            value: 95.824
          - type: recall_at_100
            value: 99.70599999999999
          - type: recall_at_1000
            value: 99.979
          - type: recall_at_3
            value: 88.099
          - type: recall_at_5
            value: 92.285
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 60.52398807444541
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 65.34855891507871
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.188000000000001
          - type: map_at_10
            value: 13.987
          - type: map_at_100
            value: 16.438
          - type: map_at_1000
            value: 16.829
          - type: map_at_3
            value: 9.767000000000001
          - type: map_at_5
            value: 11.912
          - type: mrr_at_1
            value: 25.6
          - type: mrr_at_10
            value: 37.744
          - type: mrr_at_100
            value: 38.847
          - type: mrr_at_1000
            value: 38.894
          - type: mrr_at_3
            value: 34.166999999999994
          - type: mrr_at_5
            value: 36.207
          - type: ndcg_at_1
            value: 25.6
          - type: ndcg_at_10
            value: 22.980999999999998
          - type: ndcg_at_100
            value: 32.039
          - type: ndcg_at_1000
            value: 38.157000000000004
          - type: ndcg_at_3
            value: 21.567
          - type: ndcg_at_5
            value: 19.070999999999998
          - type: precision_at_1
            value: 25.6
          - type: precision_at_10
            value: 12.02
          - type: precision_at_100
            value: 2.5100000000000002
          - type: precision_at_1000
            value: 0.396
          - type: precision_at_3
            value: 20.333000000000002
          - type: precision_at_5
            value: 16.98
          - type: recall_at_1
            value: 5.188000000000001
          - type: recall_at_10
            value: 24.372
          - type: recall_at_100
            value: 50.934999999999995
          - type: recall_at_1000
            value: 80.477
          - type: recall_at_3
            value: 12.363
          - type: recall_at_5
            value: 17.203
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 87.24286275535398
          - type: cos_sim_spearman
            value: 82.62333770991818
          - type: euclidean_pearson
            value: 84.60353717637284
          - type: euclidean_spearman
            value: 82.32990108810047
          - type: manhattan_pearson
            value: 84.6089049738196
          - type: manhattan_spearman
            value: 82.33361785438936
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.87428858503165
          - type: cos_sim_spearman
            value: 79.09145886519929
          - type: euclidean_pearson
            value: 86.42669231664036
          - type: euclidean_spearman
            value: 80.03127375435449
          - type: manhattan_pearson
            value: 86.41330338305022
          - type: manhattan_spearman
            value: 80.02492538673368
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 88.67912277322645
          - type: cos_sim_spearman
            value: 89.6171319711762
          - type: euclidean_pearson
            value: 86.56571917398725
          - type: euclidean_spearman
            value: 87.71216907898948
          - type: manhattan_pearson
            value: 86.57459050182473
          - type: manhattan_spearman
            value: 87.71916648349993
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 86.71957379085862
          - type: cos_sim_spearman
            value: 85.01784075851465
          - type: euclidean_pearson
            value: 84.7407848472801
          - type: euclidean_spearman
            value: 84.61063091345538
          - type: manhattan_pearson
            value: 84.71494352494403
          - type: manhattan_spearman
            value: 84.58772077604254
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.40508326325175
          - type: cos_sim_spearman
            value: 89.50912897763186
          - type: euclidean_pearson
            value: 87.82349070086627
          - type: euclidean_spearman
            value: 88.44179162727521
          - type: manhattan_pearson
            value: 87.80181927025595
          - type: manhattan_spearman
            value: 88.43205129636243
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.35846741715478
          - type: cos_sim_spearman
            value: 86.61172476741842
          - type: euclidean_pearson
            value: 84.60123125491637
          - type: euclidean_spearman
            value: 85.3001948141827
          - type: manhattan_pearson
            value: 84.56231142658329
          - type: manhattan_spearman
            value: 85.23579900798813
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.94539129818824
          - type: cos_sim_spearman
            value: 88.99349064256742
          - type: euclidean_pearson
            value: 88.7142444640351
          - type: euclidean_spearman
            value: 88.34120813505011
          - type: manhattan_pearson
            value: 88.70363008238084
          - type: manhattan_spearman
            value: 88.31952816956954
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.29910260369893
          - type: cos_sim_spearman
            value: 68.79263346213466
          - type: euclidean_pearson
            value: 68.41627521422252
          - type: euclidean_spearman
            value: 66.61602587398579
          - type: manhattan_pearson
            value: 68.49402183447361
          - type: manhattan_spearman
            value: 66.80157792354453
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.43703906343708
          - type: cos_sim_spearman
            value: 89.06081805093662
          - type: euclidean_pearson
            value: 87.48311456299662
          - type: euclidean_spearman
            value: 88.07417597580013
          - type: manhattan_pearson
            value: 87.48202249768894
          - type: manhattan_spearman
            value: 88.04758031111642
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.49080620485203
          - type: mrr
            value: 96.19145378949301
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 59.317
          - type: map_at_10
            value: 69.296
          - type: map_at_100
            value: 69.738
          - type: map_at_1000
            value: 69.759
          - type: map_at_3
            value: 66.12599999999999
          - type: map_at_5
            value: 67.532
          - type: mrr_at_1
            value: 62
          - type: mrr_at_10
            value: 70.176
          - type: mrr_at_100
            value: 70.565
          - type: mrr_at_1000
            value: 70.583
          - type: mrr_at_3
            value: 67.833
          - type: mrr_at_5
            value: 68.93299999999999
          - type: ndcg_at_1
            value: 62
          - type: ndcg_at_10
            value: 74.069
          - type: ndcg_at_100
            value: 76.037
          - type: ndcg_at_1000
            value: 76.467
          - type: ndcg_at_3
            value: 68.628
          - type: ndcg_at_5
            value: 70.57600000000001
          - type: precision_at_1
            value: 62
          - type: precision_at_10
            value: 10
          - type: precision_at_100
            value: 1.097
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26.667
          - type: precision_at_5
            value: 17.4
          - type: recall_at_1
            value: 59.317
          - type: recall_at_10
            value: 87.822
          - type: recall_at_100
            value: 96.833
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 73.06099999999999
          - type: recall_at_5
            value: 77.928
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.88910891089108
          - type: cos_sim_ap
            value: 97.236958456951
          - type: cos_sim_f1
            value: 94.39999999999999
          - type: cos_sim_precision
            value: 94.39999999999999
          - type: cos_sim_recall
            value: 94.39999999999999
          - type: dot_accuracy
            value: 99.82574257425742
          - type: dot_ap
            value: 94.94344759441888
          - type: dot_f1
            value: 91.17352056168507
          - type: dot_precision
            value: 91.44869215291752
          - type: dot_recall
            value: 90.9
          - type: euclidean_accuracy
            value: 99.88415841584158
          - type: euclidean_ap
            value: 97.2044250782305
          - type: euclidean_f1
            value: 94.210786739238
          - type: euclidean_precision
            value: 93.24191968658178
          - type: euclidean_recall
            value: 95.19999999999999
          - type: manhattan_accuracy
            value: 99.88613861386139
          - type: manhattan_ap
            value: 97.20683205497689
          - type: manhattan_f1
            value: 94.2643391521197
          - type: manhattan_precision
            value: 94.02985074626866
          - type: manhattan_recall
            value: 94.5
          - type: max_accuracy
            value: 99.88910891089108
          - type: max_ap
            value: 97.236958456951
          - type: max_f1
            value: 94.39999999999999
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 66.53940781726187
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 36.71865011295108
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.3218674533331
          - type: mrr
            value: 56.28279910449028
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.723915667479673
          - type: cos_sim_spearman
            value: 32.029070449745234
          - type: dot_pearson
            value: 28.864944212481454
          - type: dot_spearman
            value: 27.939266999596725
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.231
          - type: map_at_10
            value: 1.949
          - type: map_at_100
            value: 10.023
          - type: map_at_1000
            value: 23.485
          - type: map_at_3
            value: 0.652
          - type: map_at_5
            value: 1.054
          - type: mrr_at_1
            value: 86
          - type: mrr_at_10
            value: 92.067
          - type: mrr_at_100
            value: 92.067
          - type: mrr_at_1000
            value: 92.067
          - type: mrr_at_3
            value: 91.667
          - type: mrr_at_5
            value: 92.067
          - type: ndcg_at_1
            value: 83
          - type: ndcg_at_10
            value: 76.32900000000001
          - type: ndcg_at_100
            value: 54.662
          - type: ndcg_at_1000
            value: 48.062
          - type: ndcg_at_3
            value: 81.827
          - type: ndcg_at_5
            value: 80.664
          - type: precision_at_1
            value: 86
          - type: precision_at_10
            value: 80
          - type: precision_at_100
            value: 55.48
          - type: precision_at_1000
            value: 20.938000000000002
          - type: precision_at_3
            value: 85.333
          - type: precision_at_5
            value: 84.39999999999999
          - type: recall_at_1
            value: 0.231
          - type: recall_at_10
            value: 2.158
          - type: recall_at_100
            value: 13.344000000000001
          - type: recall_at_1000
            value: 44.31
          - type: recall_at_3
            value: 0.6779999999999999
          - type: recall_at_5
            value: 1.13
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.524
          - type: map_at_10
            value: 10.183
          - type: map_at_100
            value: 16.625
          - type: map_at_1000
            value: 18.017
          - type: map_at_3
            value: 5.169
          - type: map_at_5
            value: 6.772
          - type: mrr_at_1
            value: 32.653
          - type: mrr_at_10
            value: 47.128
          - type: mrr_at_100
            value: 48.458
          - type: mrr_at_1000
            value: 48.473
          - type: mrr_at_3
            value: 44.897999999999996
          - type: mrr_at_5
            value: 45.306000000000004
          - type: ndcg_at_1
            value: 30.612000000000002
          - type: ndcg_at_10
            value: 24.928
          - type: ndcg_at_100
            value: 37.613
          - type: ndcg_at_1000
            value: 48.528
          - type: ndcg_at_3
            value: 28.829
          - type: ndcg_at_5
            value: 25.237
          - type: precision_at_1
            value: 32.653
          - type: precision_at_10
            value: 22.448999999999998
          - type: precision_at_100
            value: 8.02
          - type: precision_at_1000
            value: 1.537
          - type: precision_at_3
            value: 30.612000000000002
          - type: precision_at_5
            value: 24.490000000000002
          - type: recall_at_1
            value: 2.524
          - type: recall_at_10
            value: 16.38
          - type: recall_at_100
            value: 49.529
          - type: recall_at_1000
            value: 83.598
          - type: recall_at_3
            value: 6.411
          - type: recall_at_5
            value: 8.932
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.09020000000001
          - type: ap
            value: 14.451710060978993
          - type: f1
            value: 54.7874410609049
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 59.745331069609506
          - type: f1
            value: 60.08387848592697
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 51.71549485462037
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.39345532574357
          - type: cos_sim_ap
            value: 78.16796549696478
          - type: cos_sim_f1
            value: 71.27713276123171
          - type: cos_sim_precision
            value: 68.3115626511853
          - type: cos_sim_recall
            value: 74.51187335092348
          - type: dot_accuracy
            value: 85.12248912201228
          - type: dot_ap
            value: 69.26039256107077
          - type: dot_f1
            value: 65.04294321240867
          - type: dot_precision
            value: 63.251059586138126
          - type: dot_recall
            value: 66.93931398416886
          - type: euclidean_accuracy
            value: 87.07754664123503
          - type: euclidean_ap
            value: 77.7872176038945
          - type: euclidean_f1
            value: 70.85587801278899
          - type: euclidean_precision
            value: 66.3519115614924
          - type: euclidean_recall
            value: 76.01583113456465
          - type: manhattan_accuracy
            value: 87.07754664123503
          - type: manhattan_ap
            value: 77.7341400185556
          - type: manhattan_f1
            value: 70.80310880829015
          - type: manhattan_precision
            value: 69.54198473282443
          - type: manhattan_recall
            value: 72.1108179419525
          - type: max_accuracy
            value: 87.39345532574357
          - type: max_ap
            value: 78.16796549696478
          - type: max_f1
            value: 71.27713276123171
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.09457833663213
          - type: cos_sim_ap
            value: 86.33024314706873
          - type: cos_sim_f1
            value: 78.59623733719248
          - type: cos_sim_precision
            value: 74.13322413322413
          - type: cos_sim_recall
            value: 83.63104404065291
          - type: dot_accuracy
            value: 88.3086894089339
          - type: dot_ap
            value: 83.92225241805097
          - type: dot_f1
            value: 76.8721826377781
          - type: dot_precision
            value: 72.8168044077135
          - type: dot_recall
            value: 81.40591315060055
          - type: euclidean_accuracy
            value: 88.77052043311213
          - type: euclidean_ap
            value: 85.7410710218755
          - type: euclidean_f1
            value: 77.97705489398781
          - type: euclidean_precision
            value: 73.77713657598241
          - type: euclidean_recall
            value: 82.68401601478288
          - type: manhattan_accuracy
            value: 88.73753250281368
          - type: manhattan_ap
            value: 85.72867199072802
          - type: manhattan_f1
            value: 77.89774182922812
          - type: manhattan_precision
            value: 74.23787931635857
          - type: manhattan_recall
            value: 81.93717277486911
          - type: max_accuracy
            value: 89.09457833663213
          - type: max_ap
            value: 86.33024314706873
          - type: max_f1
            value: 78.59623733719248
license: apache-2.0
language:
  - en

Universal AnglE Embedding

Follow us on GitHub: https://github.com/SeanLee97/AnglE.

🔥 Our universal English sentence embedding WhereIsAI/UAE-Large-V1 achieves SOTA on the MTEB Leaderboard with an average score of 64.64!

image/jpeg

Usage

python -m pip install -U angle-emb
  1. Non-Retrieval Tasks
from angle_emb import AnglE

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
  1. Retrieval Tasks

For retrieval purposes, please use the prompt Prompts.C.

from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1', 'text': 'hello world2'}], to_numpy=True)
print(vecs)

Citation

If you use our pre-trained models, welcome to support us by citing our work:

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}