metadata
library_name: peft
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: NousResearch/Llama-2-7b-hf
model-index:
- name: billm-llama-7b-conll03-ner
results: []
billm-llama-7b-conll03-ner
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1740
- Precision: 0.9207
- Recall: 0.9361
- F1: 0.9283
- Accuracy: 0.9857
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.049 | 1.0 | 1756 | 0.0956 | 0.9083 | 0.9254 | 0.9168 | 0.9841 |
0.0199 | 2.0 | 3512 | 0.0920 | 0.9162 | 0.9254 | 0.9208 | 0.9846 |
0.0093 | 3.0 | 5268 | 0.1172 | 0.9215 | 0.9325 | 0.9270 | 0.9856 |
0.0037 | 4.0 | 7024 | 0.1428 | 0.9207 | 0.9361 | 0.9283 | 0.9857 |
0.0013 | 5.0 | 8780 | 0.1642 | 0.9187 | 0.9346 | 0.9266 | 0.9854 |
0.0007 | 6.0 | 10536 | 0.1724 | 0.9202 | 0.9368 | 0.9284 | 0.9857 |
0.0005 | 7.0 | 12292 | 0.1729 | 0.9205 | 0.9364 | 0.9284 | 0.9858 |
0.0004 | 8.0 | 14048 | 0.1736 | 0.9214 | 0.9368 | 0.9290 | 0.9858 |
0.0003 | 9.0 | 15804 | 0.1737 | 0.9208 | 0.9359 | 0.9283 | 0.9857 |
0.0003 | 10.0 | 17560 | 0.1740 | 0.9207 | 0.9361 | 0.9283 | 0.9857 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.16.0
- Tokenizers 0.15.0