File size: 2,789 Bytes
38001da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: facebook/wav2vec2-large-robust-ft-libri-960h
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2

This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-libri-960h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-libri-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0280
- Accuracy: 0.6146

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0786        | 1.0   | 36   | 2.0692          | 0.1597   |
| 2.0578        | 2.0   | 72   | 2.0555          | 0.1979   |
| 1.9903        | 3.0   | 108  | 1.9172          | 0.2882   |
| 1.8052        | 4.0   | 144  | 1.7975          | 0.2951   |
| 1.7221        | 5.0   | 180  | 1.6602          | 0.4028   |
| 1.5773        | 6.0   | 216  | 1.6362          | 0.4479   |
| 1.4785        | 7.0   | 252  | 1.4675          | 0.4965   |
| 1.3828        | 8.0   | 288  | 1.3735          | 0.5      |
| 1.2352        | 9.0   | 324  | 1.2886          | 0.5278   |
| 1.159         | 10.0  | 360  | 1.2184          | 0.5521   |
| 1.073         | 11.0  | 396  | 1.1456          | 0.5556   |
| 1.0127        | 12.0  | 432  | 1.1864          | 0.5694   |
| 0.9374        | 13.0  | 468  | 1.1865          | 0.5625   |
| 0.8622        | 14.0  | 504  | 1.1745          | 0.5660   |
| 0.8704        | 15.0  | 540  | 1.1563          | 0.5694   |
| 0.8607        | 16.0  | 576  | 1.0466          | 0.5938   |
| 0.8228        | 17.0  | 612  | 1.0457          | 0.6007   |
| 0.8521        | 18.0  | 648  | 1.0280          | 0.6146   |
| 0.8248        | 19.0  | 684  | 1.0399          | 0.6146   |
| 0.7901        | 20.0  | 720  | 1.0402          | 0.6111   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3