Wiam's picture
update model card README.md
55f2733
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-robust-ft-libri-960h
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3
    results: []

wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3

This model is a fine-tuned version of facebook/wav2vec2-large-robust-ft-libri-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9736
  • Accuracy: 0.6354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0795 1.0 18 2.0783 0.1007
2.0703 2.0 36 2.0743 0.1181
2.062 3.0 54 2.0632 0.1597
2.0444 4.0 72 2.0439 0.1910
2.0031 5.0 90 1.9762 0.2778
1.9632 6.0 108 1.8421 0.3576
1.8249 7.0 126 1.7072 0.3889
1.6733 8.0 144 1.5729 0.3819
1.5452 9.0 162 1.4826 0.4201
1.4479 10.0 180 1.4214 0.4236
1.443 11.0 198 1.3441 0.4340
1.3341 12.0 216 1.3241 0.5
1.2697 13.0 234 1.2810 0.5069
1.2348 14.0 252 1.2349 0.5069
1.1785 15.0 270 1.1948 0.5208
1.1687 16.0 288 1.1831 0.5451
1.1168 17.0 306 1.1481 0.5764
1.0975 18.0 324 1.1342 0.5764
1.0491 19.0 342 1.1138 0.6146
1.033 20.0 360 1.0800 0.6146
1.0523 21.0 378 1.0678 0.6146
1.0136 22.0 396 1.0472 0.6111
0.9777 23.0 414 1.0175 0.6111
1.0007 24.0 432 1.0703 0.6215
0.9584 25.0 450 0.9935 0.6181
0.9102 26.0 468 0.9736 0.6354
0.9101 27.0 486 0.9758 0.6285
0.9405 28.0 504 0.9659 0.6319
0.9366 29.0 522 0.9719 0.625
0.9498 30.0 540 0.9713 0.6215

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3