t5-base-devices-sum-ver1

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0935
  • Rouge1: 97.2294
  • Rouge2: 80.1323
  • Rougel: 97.245
  • Rougelsum: 97.2763
  • Gen Len: 4.9507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 186 0.2461 91.9436 71.232 91.9417 91.9585 4.6644
No log 2.0 372 0.1580 94.5247 76.1321 94.5044 94.5382 4.8953
0.488 3.0 558 0.1239 95.8673 78.1183 95.8862 95.8919 4.9102
0.488 4.0 744 0.1100 96.5746 78.9878 96.5848 96.5831 4.9102
0.488 5.0 930 0.1008 96.9074 79.5536 96.9143 96.9317 4.9291
0.1303 6.0 1116 0.0974 96.9274 79.6953 96.933 96.9473 4.9291
0.1303 7.0 1302 0.0969 96.8041 79.5073 96.817 96.8266 4.9271
0.1303 8.0 1488 0.0945 97.1496 79.9757 97.1529 97.1779 4.9534
0.089 9.0 1674 0.0944 97.253 80.1236 97.2619 97.2899 4.9595
0.089 10.0 1860 0.0935 97.2294 80.1323 97.245 97.2763 4.9507

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.