Wizounovziki commited on
Commit
a59a081
·
1 Parent(s): 9c9a6bd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-base-devices-sum-ver1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-base-devices-sum-ver1
16
+
17
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0935
20
+ - Rouge1: 97.2294
21
+ - Rouge2: 80.1323
22
+ - Rougel: 97.245
23
+ - Rougelsum: 97.2763
24
+ - Gen Len: 4.9507
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | No log | 1.0 | 186 | 0.2461 | 91.9436 | 71.232 | 91.9417 | 91.9585 | 4.6644 |
57
+ | No log | 2.0 | 372 | 0.1580 | 94.5247 | 76.1321 | 94.5044 | 94.5382 | 4.8953 |
58
+ | 0.488 | 3.0 | 558 | 0.1239 | 95.8673 | 78.1183 | 95.8862 | 95.8919 | 4.9102 |
59
+ | 0.488 | 4.0 | 744 | 0.1100 | 96.5746 | 78.9878 | 96.5848 | 96.5831 | 4.9102 |
60
+ | 0.488 | 5.0 | 930 | 0.1008 | 96.9074 | 79.5536 | 96.9143 | 96.9317 | 4.9291 |
61
+ | 0.1303 | 6.0 | 1116 | 0.0974 | 96.9274 | 79.6953 | 96.933 | 96.9473 | 4.9291 |
62
+ | 0.1303 | 7.0 | 1302 | 0.0969 | 96.8041 | 79.5073 | 96.817 | 96.8266 | 4.9271 |
63
+ | 0.1303 | 8.0 | 1488 | 0.0945 | 97.1496 | 79.9757 | 97.1529 | 97.1779 | 4.9534 |
64
+ | 0.089 | 9.0 | 1674 | 0.0944 | 97.253 | 80.1236 | 97.2619 | 97.2899 | 4.9595 |
65
+ | 0.089 | 10.0 | 1860 | 0.0935 | 97.2294 | 80.1323 | 97.245 | 97.2763 | 4.9507 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.18.0
71
+ - Pytorch 1.10.0+cu111
72
+ - Datasets 2.0.0
73
+ - Tokenizers 0.11.6