t5-base-devices-sum-ver2

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1919
  • Rouge1: 95.2959
  • Rouge2: 72.5788
  • Rougel: 95.292
  • Rougelsum: 95.3437
  • Gen Len: 4.5992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 91 0.4308 87.5009 61.4165 87.6082 87.6628 4.3897
No log 2.0 182 0.2945 91.7111 66.9023 91.706 91.7348 4.4965
No log 3.0 273 0.2515 93.0416 68.8046 93.063 93.0907 4.516
No log 4.0 364 0.2259 94.2097 70.862 94.2438 94.2767 4.6283
No log 5.0 455 0.2148 94.7732 71.4693 94.78 94.8274 4.5936
0.4603 6.0 546 0.2030 95.0207 71.7789 95.0212 95.0887 4.5798
0.4603 7.0 637 0.1964 95.1482 72.3333 95.1651 95.202 4.6227
0.4603 8.0 728 0.1929 95.3279 72.551 95.3459 95.3972 4.5825
0.4603 9.0 819 0.1935 95.2413 72.5801 95.2372 95.3121 4.5992
0.4603 10.0 910 0.1919 95.2959 72.5788 95.292 95.3437 4.5992

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.