t5-small-devices-sum-ver1

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2335
  • Rouge1: 93.7171
  • Rouge2: 73.3058
  • Rougel: 93.7211
  • Rougelsum: 93.689
  • Gen Len: 4.7246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 185 0.6517 83.2503 55.7516 83.254 83.2722 4.4729
No log 2.0 370 0.4239 89.2246 65.7477 89.2223 89.2288 4.5575
1.0224 3.0 555 0.3459 91.0524 68.4783 91.0222 91.0312 4.6685
1.0224 4.0 740 0.3023 91.9741 70.1066 91.9886 91.9525 4.6549
1.0224 5.0 925 0.2797 92.667 71.3468 92.6706 92.6611 4.6969
0.3678 6.0 1110 0.2616 93.229 72.2805 93.222 93.1935 4.7179
0.3678 7.0 1295 0.2469 93.362 72.6985 93.3651 93.3294 4.7111
0.3678 8.0 1480 0.2401 93.5689 73.009 93.582 93.5377 4.7192
0.2902 9.0 1665 0.2350 93.7013 73.2685 93.7256 93.684 4.724
0.2902 10.0 1850 0.2335 93.7171 73.3058 93.7211 93.689 4.7246

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.