Wizounovziki commited on
Commit
46c09eb
·
1 Parent(s): 98d3ec4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-small-devices-sum-ver1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-devices-sum-ver1
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2335
20
+ - Rouge1: 93.7171
21
+ - Rouge2: 73.3058
22
+ - Rougel: 93.7211
23
+ - Rougelsum: 93.689
24
+ - Gen Len: 4.7246
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | No log | 1.0 | 185 | 0.6517 | 83.2503 | 55.7516 | 83.254 | 83.2722 | 4.4729 |
57
+ | No log | 2.0 | 370 | 0.4239 | 89.2246 | 65.7477 | 89.2223 | 89.2288 | 4.5575 |
58
+ | 1.0224 | 3.0 | 555 | 0.3459 | 91.0524 | 68.4783 | 91.0222 | 91.0312 | 4.6685 |
59
+ | 1.0224 | 4.0 | 740 | 0.3023 | 91.9741 | 70.1066 | 91.9886 | 91.9525 | 4.6549 |
60
+ | 1.0224 | 5.0 | 925 | 0.2797 | 92.667 | 71.3468 | 92.6706 | 92.6611 | 4.6969 |
61
+ | 0.3678 | 6.0 | 1110 | 0.2616 | 93.229 | 72.2805 | 93.222 | 93.1935 | 4.7179 |
62
+ | 0.3678 | 7.0 | 1295 | 0.2469 | 93.362 | 72.6985 | 93.3651 | 93.3294 | 4.7111 |
63
+ | 0.3678 | 8.0 | 1480 | 0.2401 | 93.5689 | 73.009 | 93.582 | 93.5377 | 4.7192 |
64
+ | 0.2902 | 9.0 | 1665 | 0.2350 | 93.7013 | 73.2685 | 93.7256 | 93.684 | 4.724 |
65
+ | 0.2902 | 10.0 | 1850 | 0.2335 | 93.7171 | 73.3058 | 93.7211 | 93.689 | 4.7246 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.18.0
71
+ - Pytorch 1.10.0+cu111
72
+ - Datasets 2.0.0
73
+ - Tokenizers 0.11.6