File size: 1,934 Bytes
c8cdc82
 
 
 
 
 
 
a4878a9
 
c8cdc82
 
a4878a9
 
 
 
 
b80267f
a4878a9
 
 
 
 
 
 
c780e6e
c8cdc82
 
 
 
 
 
 
b80267f
a4878a9
c780e6e
 
c8cdc82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc36e7
c8cdc82
 
 
 
b80267f
c8cdc82
 
 
bc77b0a
 
c780e6e
 
 
 
 
c8cdc82
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8181818181818182
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6744
- Accuracy: 0.8182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0099        | 3.57  | 50   | 0.6155          | 0.8182   |
| 0.0007        | 7.14  | 100  | 0.7441          | 0.7576   |
| 0.0004        | 10.71 | 150  | 0.6925          | 0.8182   |
| 0.0003        | 14.29 | 200  | 0.6793          | 0.8182   |
| 0.0003        | 17.86 | 250  | 0.6744          | 0.8182   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3