metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: temp
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.75
vit-base
This model is a fine-tuned version of google/vit-base-patch16-224 on the temp dataset. It achieves the following results on the evaluation set:
- Loss: 1.1401
- Accuracy: 0.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1567 | 2.0 | 20 | 0.9874 | 0.75 |
0.0007 | 4.0 | 40 | 0.9885 | 0.75 |
0.0004 | 6.0 | 60 | 1.1331 | 0.75 |
0.0003 | 8.0 | 80 | 1.1414 | 0.75 |
0.0003 | 10.0 | 100 | 1.1401 | 0.75 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3