DIPO / agent /diffusion.py
Wyatt-Huang's picture
Upload 10 files
f761808 verified
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from agent.helpers import (cosine_beta_schedule,
linear_beta_schedule,
vp_beta_schedule,
extract,
Losses)
from agent.model import Model
class Diffusion(nn.Module):
def __init__(self, state_dim, action_dim, noise_ratio,
beta_schedule='vp', n_timesteps=1000,
loss_type='l2', clip_denoised=True, predict_epsilon=True):
super(Diffusion, self).__init__()
self.state_dim = state_dim
self.action_dim = action_dim
self.model = Model(state_dim, action_dim)
self.max_noise_ratio = noise_ratio
self.noise_ratio = noise_ratio
if beta_schedule == 'linear':
betas = linear_beta_schedule(n_timesteps)
elif beta_schedule == 'cosine':
betas = cosine_beta_schedule(n_timesteps)
elif beta_schedule == 'vp':
betas = vp_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.clip_denoised = clip_denoised
self.predict_epsilon = predict_epsilon
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
## log calculation clipped because the posterior variance
## is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped',
torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1',
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2',
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))
self.loss_fn = Losses[loss_type]()
# ------------------------------------------ sampling ------------------------------------------#
def predict_start_from_noise(self, x_t, t, noise):
'''
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
'''
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, s):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.model(x, t, s))
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, s):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, s=s)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise * self.noise_ratio
@torch.no_grad()
def p_sample_loop(self, state, shape):
device = self.betas.device
batch_size = shape[0]
x = torch.randn(shape, device=device)
for i in reversed(range(0, self.n_timesteps)):
timesteps = torch.full((batch_size,), i, device=device, dtype=torch.long)
x = self.p_sample(x, timesteps, state)
return x
@torch.no_grad()
def sample(self, state, eval=False):
self.noise_ratio = 0 if eval else self.max_noise_ratio
batch_size = state.shape[0]
shape = (batch_size, self.action_dim)
action = self.p_sample_loop(state, shape)
return action.clamp_(-1., 1.)
# ------------------------------------------ training ------------------------------------------#
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, state, t, weights=1.0):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.model(x_noisy, t, state)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = self.loss_fn(x_recon, noise, weights)
else:
loss = self.loss_fn(x_recon, x_start, weights)
return loss
def loss(self, x, state, weights=1.0):
batch_size = len(x)
t = torch.randint(0, self.n_timesteps, (batch_size,), device=x.device).long()
return self.p_losses(x, state, t, weights)
def forward(self, state, eval=False):
return self.sample(state, eval)