|
--- |
|
frameworks: |
|
- Pytorch |
|
license: Apache License 2.0 |
|
tasks: |
|
- text-generation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--- |
|
### Important Links |
|
|
|
🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) | |
|
📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) | |
|
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) | |
|
🤗[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B) |
|
|
|
|
|
## Introduction |
|
We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers. |
|
- The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes. |
|
- The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL. |
|
- The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models. |
|
|
|
|
|
## Model Downloads |
|
|
|
|
|
| **Model** | **Download Latest** | |
|
|-----------|------------------| |
|
|XiYanSQL-QwenCoder-3B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)| |
|
|XiYanSQL-QwenCoder-7B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)| |
|
|XiYanSQL-QwenCoder-14B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)| |
|
|XiYanSQL-QwenCoder-32B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)| |
|
|
|
|
|
|
|
## Performance |
|
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain. |
|
|
|
| Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL| |
|
|-----------|:------------------:|:---------------:|:-------------------:|:---------------:| |
|
|Codellama-34b | 33.05% | - | 67.74% | - | |
|
|Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - | |
|
|TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% | |
|
|Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% | |
|
|GLM-4-plus | 54.37% | - | 79.40% | - | |
|
|Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% | |
|
|Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% | |
|
|Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% | |
|
|GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% | |
|
|XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% | |
|
|XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% | |
|
|XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% | |
|
|XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% | |
|
|
|
|
|
## Requirements |
|
|
|
transformers >= 4.37.0 |
|
|
|
## Quickstart |
|
|
|
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. |
|
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. |
|
|
|
``` |
|
|
|
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 |
|
【用户问题】 |
|
{question} |
|
|
|
【数据库schema】 |
|
{db_schema} |
|
|
|
【参考信息】 |
|
{evidence} |
|
|
|
【用户问题】 |
|
{question} |
|
|
|
```sql""" |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] |
|
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") |
|
message = [{'role': 'user', 'content': prompt}] |
|
|
|
text = tokenizer.apply_chat_template( |
|
message, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=1024, |
|
temperature=0.1, |
|
top_p=0.8, |
|
do_sample=True, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
``` |
|
|
|
|
|
## Acknowledgments |
|
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community! |
|
|