Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,119 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
### Important Links
|
6 |
+
|
7 |
+
🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
|
8 |
+
📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
|
9 |
+
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
|
10 |
+
🤗[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
|
11 |
+
|
12 |
+
|
13 |
+
## Introduction
|
14 |
+
We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers.
|
15 |
+
- The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes.
|
16 |
+
- The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL.
|
17 |
+
- The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models.
|
18 |
+
|
19 |
+
|
20 |
+
## Model Downloads
|
21 |
+
|
22 |
+
|
23 |
+
| **Model** | **Download Latest** |
|
24 |
+
|-----------|------------------|
|
25 |
+
|XiYanSQL-QwenCoder-3B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)|
|
26 |
+
|XiYanSQL-QwenCoder-7B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)|
|
27 |
+
|XiYanSQL-QwenCoder-14B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)|
|
28 |
+
|XiYanSQL-QwenCoder-32B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)|
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
## Performance
|
33 |
+
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain.
|
34 |
+
|
35 |
+
| Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL|
|
36 |
+
|-----------|:------------------:|:---------------:|:-------------------:|:---------------:|
|
37 |
+
|Codellama-34b | 33.05% | - | 67.74% | - |
|
38 |
+
|Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - |
|
39 |
+
|TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% |
|
40 |
+
|Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% |
|
41 |
+
|GLM-4-plus | 54.37% | - | 79.40% | - |
|
42 |
+
|Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% |
|
43 |
+
|Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% |
|
44 |
+
|Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% |
|
45 |
+
|GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% |
|
46 |
+
|XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% |
|
47 |
+
|XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% |
|
48 |
+
|XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% |
|
49 |
+
|XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% |
|
50 |
+
|
51 |
+
|
52 |
+
## Requirements
|
53 |
+
|
54 |
+
transformers >= 4.37.0
|
55 |
+
|
56 |
+
## Quickstart
|
57 |
+
|
58 |
+
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
|
59 |
+
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
|
60 |
+
|
61 |
+
```
|
62 |
+
|
63 |
+
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
|
64 |
+
【用户问题】
|
65 |
+
{question}
|
66 |
+
|
67 |
+
【数据库schema】
|
68 |
+
{db_schema}
|
69 |
+
|
70 |
+
【参考信息】
|
71 |
+
{evidence}
|
72 |
+
|
73 |
+
【用户问题】
|
74 |
+
{question}
|
75 |
+
|
76 |
+
```sql"""
|
77 |
+
|
78 |
+
import torch
|
79 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
80 |
+
|
81 |
+
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_name,
|
84 |
+
torch_dtype=torch.bfloat16,
|
85 |
+
device_map="auto"
|
86 |
+
)
|
87 |
+
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
89 |
+
|
90 |
+
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
|
91 |
+
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
|
92 |
+
message = [{'role': 'user', 'content': prompt}]
|
93 |
+
|
94 |
+
text = tokenizer.apply_chat_template(
|
95 |
+
message,
|
96 |
+
tokenize=False,
|
97 |
+
add_generation_prompt=True
|
98 |
+
)
|
99 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
100 |
+
|
101 |
+
generated_ids = model.generate(
|
102 |
+
**model_inputs,
|
103 |
+
pad_token_id=tokenizer.pad_token_id,
|
104 |
+
eos_token_id=tokenizer.eos_token_id,
|
105 |
+
max_new_tokens=1024,
|
106 |
+
temperature=0.1,
|
107 |
+
top_p=0.8,
|
108 |
+
do_sample=True,
|
109 |
+
)
|
110 |
+
generated_ids = [
|
111 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
112 |
+
]
|
113 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
114 |
+
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
## Acknowledgments
|
119 |
+
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!
|