|
import numpy as np |
|
import scipy |
|
import scipy.signal as scisig |
|
|
|
|
|
def rescale(data, limits): |
|
return (data - limits[0]) / (limits[1] - limits[0]) |
|
|
|
|
|
def normalized_difference(channel1, channel2): |
|
subchan = channel1 - channel2 |
|
sumchan = channel1 + channel2 |
|
sumchan[sumchan == 0] = 0.001 |
|
return subchan / sumchan |
|
|
|
|
|
def get_shadow_mask(data_image): |
|
data_image = data_image / 10000. |
|
|
|
(ch, r, c) = data_image.shape |
|
shadowmask = np.zeros((r, c)).astype('float32') |
|
|
|
BB = data_image[1] |
|
BNIR = data_image[7] |
|
BSWIR1 = data_image[11] |
|
|
|
CSI = (BNIR + BSWIR1) / 2. |
|
|
|
t3 = 3/4 |
|
T3 = np.min(CSI) + t3 * (np.mean(CSI) - np.min(CSI)) |
|
|
|
t4 = 5 / 6 |
|
T4 = np.min(BB) + t4 * (np.mean(BB) - np.min(BB)) |
|
|
|
shadow_tf = np.logical_and(CSI < T3, BB < T4) |
|
|
|
shadowmask[shadow_tf] = -1 |
|
shadowmask = scisig.medfilt2d(shadowmask, 5) |
|
|
|
return shadowmask |
|
|
|
|
|
def get_cloud_mask(data_image, cloud_threshold, binarize=False, use_moist_check=False): |
|
'''Adapted from https://github.com/samsammurphy/cloud-masking-sentinel2/blob/master/cloud-masking-sentinel2.ipynb''' |
|
|
|
data_image = data_image / 10000. |
|
(ch, r, c) = data_image.shape |
|
|
|
|
|
score = np.ones((r, c)).astype('float32') |
|
|
|
score = np.minimum(score, rescale(data_image[1], [0.1, 0.5])) |
|
score = np.minimum(score, rescale(data_image[0], [0.1, 0.3])) |
|
score = np.minimum(score, rescale((data_image[0] + data_image[10]), [0.4, 0.9])) |
|
score = np.minimum(score, rescale((data_image[3] + data_image[2] + data_image[1]), [0.2, 0.8])) |
|
|
|
if use_moist_check: |
|
|
|
ndmi = normalized_difference(data_image[7], data_image[11]) |
|
score = np.minimum(score, rescale(ndmi, [-0.1, 0.1])) |
|
|
|
|
|
ndsi = normalized_difference(data_image[2], data_image[11]) |
|
score = np.minimum(score, rescale(ndsi, [0.8, 0.6])) |
|
|
|
boxsize = 7 |
|
box = np.ones((boxsize, boxsize)) / (boxsize ** 2) |
|
|
|
score = scipy.ndimage.morphology.grey_closing(score, size=(5, 5)) |
|
score = scisig.convolve2d(score, box, mode='same') |
|
|
|
score = np.clip(score, 0.00001, 1.0) |
|
|
|
if binarize: |
|
score[score >= cloud_threshold] = 1 |
|
score[score < cloud_threshold] = 0 |
|
|
|
return score |
|
|
|
|
|
|
|
|
|
|
|
def get_cloud_cloudshadow_mask(data_image, cloud_threshold): |
|
cloud_mask = get_cloud_mask(data_image, cloud_threshold, binarize=True) |
|
shadow_mask = get_shadow_mask(data_image) |
|
|
|
|
|
cloud_cloudshadow_mask = np.zeros_like(cloud_mask) |
|
cloud_cloudshadow_mask[shadow_mask < 0] = -1 |
|
cloud_cloudshadow_mask[cloud_mask > 0] = 1 |
|
|
|
return cloud_cloudshadow_mask |
|
|