Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
mergekit
Merge
chinese
arabic
english
multilingual
german
french
gagan3012/MetaModel
jeonsworld/CarbonVillain-en-10.7B-v2
jeonsworld/CarbonVillain-en-10.7B-v4
TomGrc/FusionNet_linear
DopeorNope/SOLARC-M-10.7B
VAGOsolutions/SauerkrautLM-SOLAR-Instruct
upstage/SOLAR-10.7B-Instruct-v1.0
fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
conversational
text-generation-inference
Inference Endpoints
license: apache-2.0 | |
tags: | |
- moe | |
- mergekit | |
- merge | |
- chinese | |
- arabic | |
- english | |
- multilingual | |
- german | |
- french | |
- gagan3012/MetaModel | |
- jeonsworld/CarbonVillain-en-10.7B-v2 | |
- jeonsworld/CarbonVillain-en-10.7B-v4 | |
- TomGrc/FusionNet_linear | |
- DopeorNope/SOLARC-M-10.7B | |
- VAGOsolutions/SauerkrautLM-SOLAR-Instruct | |
- upstage/SOLAR-10.7B-Instruct-v1.0 | |
- fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 | |
# MetaModel_moex8 | |
This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: | |
* [gagan3012/MetaModel](https://huggingface.co/gagan3012/MetaModel) | |
* [jeonsworld/CarbonVillain-en-10.7B-v2](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2) | |
* [jeonsworld/CarbonVillain-en-10.7B-v4](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v4) | |
* [TomGrc/FusionNet_linear](https://huggingface.co/TomGrc/FusionNet_linear) | |
* [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B) | |
* [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) | |
* [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) | |
* [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) | |
## 🧩 Configuration | |
```yamlbase_model: jeonsworld/CarbonVillain-en-10.7B-v4 | |
dtype: bfloat16 | |
experts: | |
- positive_prompts: | |
- '' | |
source_model: gagan3012/MetaModel | |
- positive_prompts: | |
- '' | |
source_model: jeonsworld/CarbonVillain-en-10.7B-v2 | |
- positive_prompts: | |
- '' | |
source_model: jeonsworld/CarbonVillain-en-10.7B-v4 | |
- positive_prompts: | |
- '' | |
source_model: TomGrc/FusionNet_linear | |
- positive_prompts: | |
- '' | |
source_model: DopeorNope/SOLARC-M-10.7B | |
- positive_prompts: | |
- '' | |
source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct | |
- positive_prompts: | |
- '' | |
source_model: upstage/SOLAR-10.7B-Instruct-v1.0 | |
- positive_prompts: | |
- '' | |
source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 | |
gate_mode: hidden | |
``` | |
## 💻 Usage | |
```python | |
!pip install -qU transformers bitsandbytes accelerate | |
from transformers import AutoTokenizer | |
import transformers | |
import torch | |
model = "gagan3012/MetaModel_moex8" | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, | |
) | |
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] | |
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
print(outputs[0]["generated_text"]) | |
``` |