Add/update the quantized ONNX model files and README.md for Transformers.js v3
#6
by
whitphx
HF Staff
- opened
README.md
CHANGED
@@ -7,9 +7,9 @@ tags:
|
|
7 |
|
8 |
# text-embedding-ada-002 Tokenizer
|
9 |
|
10 |
-
A 🤗-compatible version of the **text-embedding-ada-002 tokenizer** (adapted from [openai/tiktoken](https://github.com/openai/tiktoken)). This means it can be used with Hugging Face libraries including [Transformers](https://github.com/huggingface/transformers), [Tokenizers](https://github.com/huggingface/tokenizers), and [Transformers.js](https://github.com/
|
11 |
|
12 |
-
##
|
13 |
|
14 |
### Transformers/Tokenizers
|
15 |
```py
|
@@ -20,8 +20,13 @@ assert tokenizer.encode('hello world') == [15339, 1917]
|
|
20 |
```
|
21 |
|
22 |
### Transformers.js
|
|
|
|
|
|
|
|
|
|
|
23 |
```js
|
24 |
-
import { AutoTokenizer } from '@
|
25 |
|
26 |
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/text-embedding-ada-002');
|
27 |
const tokens = tokenizer.encode('hello world'); // [15339, 1917]
|
|
|
7 |
|
8 |
# text-embedding-ada-002 Tokenizer
|
9 |
|
10 |
+
A 🤗-compatible version of the **text-embedding-ada-002 tokenizer** (adapted from [openai/tiktoken](https://github.com/openai/tiktoken)). This means it can be used with Hugging Face libraries including [Transformers](https://github.com/huggingface/transformers), [Tokenizers](https://github.com/huggingface/tokenizers), and [Transformers.js](https://github.com/huggingface/transformers.js).
|
11 |
|
12 |
+
## Usage
|
13 |
|
14 |
### Transformers/Tokenizers
|
15 |
```py
|
|
|
20 |
```
|
21 |
|
22 |
### Transformers.js
|
23 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
24 |
+
```bash
|
25 |
+
npm i @huggingface/transformers
|
26 |
+
```
|
27 |
+
|
28 |
```js
|
29 |
+
import { AutoTokenizer } from '@huggingface/transformers';
|
30 |
|
31 |
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/text-embedding-ada-002');
|
32 |
const tokens = tokenizer.encode('hello world'); // [15339, 1917]
|