Add/update the quantized ONNX model files and README.md for Transformers.js v3

#6
by whitphx HF Staff - opened
Files changed (1) hide show
  1. README.md +8 -3
README.md CHANGED
@@ -7,9 +7,9 @@ tags:
7
 
8
  # text-embedding-ada-002 Tokenizer
9
 
10
- A 🤗-compatible version of the **text-embedding-ada-002 tokenizer** (adapted from [openai/tiktoken](https://github.com/openai/tiktoken)). This means it can be used with Hugging Face libraries including [Transformers](https://github.com/huggingface/transformers), [Tokenizers](https://github.com/huggingface/tokenizers), and [Transformers.js](https://github.com/xenova/transformers.js).
11
 
12
- ## Example usage:
13
 
14
  ### Transformers/Tokenizers
15
  ```py
@@ -20,8 +20,13 @@ assert tokenizer.encode('hello world') == [15339, 1917]
20
  ```
21
 
22
  ### Transformers.js
 
 
 
 
 
23
  ```js
24
- import { AutoTokenizer } from '@xenova/transformers';
25
 
26
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/text-embedding-ada-002');
27
  const tokens = tokenizer.encode('hello world'); // [15339, 1917]
 
7
 
8
  # text-embedding-ada-002 Tokenizer
9
 
10
+ A 🤗-compatible version of the **text-embedding-ada-002 tokenizer** (adapted from [openai/tiktoken](https://github.com/openai/tiktoken)). This means it can be used with Hugging Face libraries including [Transformers](https://github.com/huggingface/transformers), [Tokenizers](https://github.com/huggingface/tokenizers), and [Transformers.js](https://github.com/huggingface/transformers.js).
11
 
12
+ ## Usage
13
 
14
  ### Transformers/Tokenizers
15
  ```py
 
20
  ```
21
 
22
  ### Transformers.js
23
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
24
+ ```bash
25
+ npm i @huggingface/transformers
26
+ ```
27
+
28
  ```js
29
+ import { AutoTokenizer } from '@huggingface/transformers';
30
 
31
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/text-embedding-ada-002');
32
  const tokens = tokenizer.encode('hello world'); // [15339, 1917]