|
--- |
|
tags: |
|
- transformers.js |
|
--- |
|
|
|
Code to generate: |
|
|
|
```py |
|
from transformers import WhisperForConditionalGeneration, AutoProcessor |
|
|
|
new_config_values = dict( |
|
d_model = 16, |
|
decoder_attention_heads = 4, |
|
decoder_layers = 1, |
|
encoder_attention_heads = 4, |
|
encoder_layers = 1, |
|
num_hidden_layers = 1, |
|
|
|
ignore_mismatched_sizes=True, |
|
) |
|
original_model = WhisperForConditionalGeneration.from_pretrained('openai/whisper-tiny', **new_config_values) |
|
original_model.save_pretrained('converted') |
|
|
|
original_processor = AutoProcessor.from_pretrained('openai/whisper-tiny') |
|
original_processor.save_pretrained('converted') |
|
``` |
|
|
|
Followed by: |
|
```sh |
|
$ mkdir -p ./converted/onnx |
|
$ optimum-cli export onnx -m ./converted ./converted/onnx --task automatic-speech-recognition-with-past |
|
$ find ./converted/onnx -type f ! -name "*.onnx" -delete |
|
``` |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Transcribe audio from a URL. |
|
|
|
```js |
|
import { pipeline } from '@huggingface/transformers'; |
|
|
|
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/tiny-random-WhisperForConditionalGeneration'); |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; |
|
const output = await transcriber(url); |
|
``` |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |