Code to generate:

from transformers import WhisperForConditionalGeneration, AutoProcessor

new_config_values = dict(
  d_model = 16,
  decoder_attention_heads = 4,
  decoder_layers = 1,
  encoder_attention_heads = 4,
  encoder_layers = 1,
  num_hidden_layers = 1,

  ignore_mismatched_sizes=True,
)
original_model = WhisperForConditionalGeneration.from_pretrained('openai/whisper-tiny', **new_config_values)
original_model.save_pretrained('converted')

original_processor = AutoProcessor.from_pretrained('openai/whisper-tiny')
original_processor.save_pretrained('converted')

Followed by:

$ mkdir -p ./converted/onnx
$ optimum-cli export onnx -m ./converted ./converted/onnx --task automatic-speech-recognition-with-past
$ find ./converted/onnx -type f ! -name "*.onnx" -delete
Downloads last month
13
Safetensors
Model size
970k params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support transformers.js models for this pipeline type.