|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- background_summ |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: '2023_12_18_08_41_35' |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: background_summ |
|
type: background_summ |
|
config: background-summ |
|
split: validation |
|
args: background-summ |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 39.8 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 2023_12_18_08_41_35 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the background_summ dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3928 |
|
- Rouge1: 39.8 |
|
- Rouge2: 18.8 |
|
- Rougel: 26.7 |
|
- Rougelsum: 36.1 |
|
- Bertscore Precision: 88.4 |
|
- Bertscore Recall: 86.8 |
|
- Bertscore F1: 87.5 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------------------:|:----------------:|:------------:| |
|
| 1.6858 | 1.0 | 714 | 2.0262 | 41.1 | 19.3 | 27.1 | 37.3 | 87.9 | 87.1 | 87.5 | |
|
| 1.1309 | 2.0 | 1428 | 2.0889 | 40.8 | 19.6 | 27.3 | 37.1 | 87.8 | 87.1 | 87.4 | |
|
| 0.7568 | 3.0 | 2142 | 2.1569 | 40.8 | 19.1 | 27.3 | 37.0 | 87.8 | 87.0 | 87.4 | |
|
| 0.6779 | 4.0 | 2856 | 2.1800 | 39.5 | 18.4 | 26.4 | 35.9 | 87.8 | 86.7 | 87.2 | |
|
| 0.5567 | 5.0 | 3570 | 2.2454 | 40.1 | 19.0 | 26.8 | 36.6 | 88.2 | 86.8 | 87.4 | |
|
| 0.5264 | 6.0 | 4284 | 2.3172 | 38.8 | 18.1 | 26.1 | 35.2 | 88.0 | 86.6 | 87.3 | |
|
| 0.5046 | 7.0 | 4998 | 2.3409 | 40.1 | 19.0 | 27.0 | 36.4 | 88.4 | 86.8 | 87.6 | |
|
| 0.4465 | 8.0 | 5712 | 2.3751 | 39.8 | 18.7 | 26.7 | 36.1 | 88.4 | 86.7 | 87.6 | |
|
| 0.4524 | 9.0 | 6426 | 2.3824 | 40.0 | 19.0 | 27.1 | 36.4 | 88.5 | 86.8 | 87.6 | |
|
| 0.4308 | 10.0 | 7140 | 2.3928 | 39.8 | 18.8 | 26.7 | 36.1 | 88.4 | 86.8 | 87.5 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|