led-large-16384-cnn_dailymail

This model is a fine-tuned version of allenai/led-base-16384 on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5544
  • Rouge1: 0.3870
  • Rouge2: 0.1736
  • Rougel: 0.2599
  • Rougelsum: 0.3653

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.9531 0.4 500 1.8639 0.3485 0.1441 0.2275 0.3288
1.9563 0.8 1000 1.8260 0.3538 0.1482 0.2315 0.3343
1.7176 1.2 1500 1.8208 0.3628 0.1527 0.2383 0.3433
1.7197 1.6 2000 1.8162 0.3696 0.1602 0.2434 0.3486
1.8086 2.0 2500 1.7924 0.3558 0.1533 0.2334 0.3361
1.2448 2.4 3000 1.8510 0.3703 0.1591 0.2447 0.3483
1.3574 2.8 3500 1.8277 0.3741 0.1593 0.2422 0.3540
1.0966 3.2 4000 1.8924 0.3682 0.1576 0.2424 0.3479
0.9938 3.6 4500 1.8957 0.3723 0.1599 0.2451 0.3511
1.0735 4.0 5000 1.8772 0.3653 0.1557 0.2399 0.3454
0.9106 4.4 5500 1.9401 0.3720 0.1585 0.2436 0.3504
1.015 4.8 6000 1.9320 0.3725 0.1570 0.2429 0.3515
1.7854 0.36 6500 1.7800 0.3624 0.1544 0.2390 0.3422
1.9079 0.39 7000 1.7629 0.3573 0.1553 0.2352 0.3370
1.7606 3.34 7500 1.6902 0.3783 0.1673 0.2521 0.3570
1.7571 3.57 8000 1.6563 0.3802 0.1691 0.2538 0.3587
1.6602 3.79 8500 1.6439 0.3814 0.1693 0.2548 0.3600
1.6614 4.01 9000 1.6312 0.3812 0.1691 0.2544 0.3599
1.668 4.24 9500 1.6189 0.3815 0.1689 0.2550 0.3603
1.6491 4.46 10000 1.6172 0.3799 0.1681 0.2540 0.3586
1.5994 4.68 10500 1.6132 0.3825 0.1702 0.2560 0.3610
1.6493 4.9 11000 1.6093 0.3828 0.1701 0.2561 0.3613
1.6769 5.13 11500 1.6074 0.3831 0.1706 0.2569 0.3619
1.6554 5.35 12000 1.6044 0.3817 0.1695 0.2559 0.3605
1.6155 5.57 12500 1.6010 0.3825 0.1700 0.2561 0.3608
1.5863 5.8 13000 1.5981 0.3829 0.1704 0.2569 0.3614
1.6306 6.02 13500 1.6004 0.3831 0.1702 0.2563 0.3618
1.6425 6.24 14000 1.5987 0.3821 0.1698 0.2561 0.3610
1.6863 6.46 14500 1.5876 0.3837 0.1710 0.2569 0.3622
1.6085 6.69 15000 1.5815 0.3836 0.1717 0.2573 0.3621
1.6267 6.91 15500 1.5792 0.3852 0.1722 0.2579 0.3633
1.5637 7.13 16000 1.5768 0.3830 0.1709 0.2568 0.3611
1.5586 7.36 16500 1.5740 0.3833 0.1706 0.2567 0.3617
1.5389 7.58 17000 1.5689 0.3858 0.1729 0.2590 0.3640
1.5694 7.8 17500 1.5645 0.3853 0.1731 0.2589 0.3636
1.5265 8.02 18000 1.5621 0.3871 0.1733 0.2596 0.3654
1.5273 8.25 18500 1.5624 0.3861 0.1726 0.2588 0.3646
1.5148 8.47 19000 1.5602 0.3866 0.1733 0.2592 0.3651
1.532 8.69 19500 1.5599 0.3859 0.1732 0.2593 0.3642
1.5113 8.92 20000 1.5602 0.3877 0.1748 0.2606 0.3658
1.5133 9.14 20500 1.5595 0.3855 0.1725 0.2587 0.3637
1.4875 9.36 21000 1.5572 0.3873 0.1741 0.2600 0.3654
1.5038 9.59 21500 1.5557 0.3860 0.1728 0.2590 0.3641
1.5062 9.81 22000 1.5544 0.3870 0.1736 0.2599 0.3653

Framework versions

  • Transformers 4.27.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
59
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Xmm/led-large-16384-cnn_dailymail

Evaluation results