|
from typing import Dict, List, Any |
|
from scipy.special import softmax |
|
import numpy as np |
|
import weakref |
|
from utils import ( |
|
clean_str, |
|
clean_str_nopunct, |
|
MultiHeadModel, |
|
BertInputBuilder, |
|
get_num_words, |
|
preprocess_transcript_for_eliciting, |
|
preprocess_raw_files, |
|
post_processing_output_json, |
|
compute_student_engagement, |
|
compute_talk_time, |
|
gpt4_filtering_selection |
|
) |
|
import torch |
|
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
UPTAKE_MODEL='ddemszky/uptake-model' |
|
QUESTION_MODEL ='ddemszky/question-detection' |
|
ELICITING_MODEL = 'YaHi/teacher_electra_small' |
|
|
|
class UptakeUtterance: |
|
def __init__(self, speaker, text, uid=None, |
|
transcript=None, starttime=None, endtime=None, **kwargs): |
|
self.speaker = speaker |
|
self.text = text |
|
self.prev_utt = None |
|
self.uid = uid |
|
self.starttime = starttime |
|
self.endtime = endtime |
|
self.transcript = weakref.ref(transcript) if transcript else None |
|
self.props = kwargs |
|
|
|
self.uptake = None |
|
self.question = None |
|
|
|
def get_clean_text(self, remove_punct=False): |
|
if remove_punct: |
|
return clean_str_nopunct(self.text) |
|
return clean_str(self.text) |
|
|
|
def get_num_words(self): |
|
if self.text is None: |
|
return 0 |
|
return get_num_words(self.text) |
|
|
|
def to_dict(self): |
|
return { |
|
'speaker': self.speaker, |
|
'text': self.text, |
|
'prev_utt': self.prev_utt, |
|
'uid': self.uid, |
|
'starttime': self.starttime, |
|
'endtime': self.endtime, |
|
'uptake': self.uptake, |
|
'question': self.question, |
|
**self.props |
|
} |
|
|
|
def __repr__(self): |
|
return f"Utterance(speaker='{self.speaker}'," \ |
|
f"text='{self.text}', prev_utt='{self.prev_utt}', uid={self.uid}," \ |
|
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})" |
|
|
|
class UptakeTranscript: |
|
def __init__(self, **kwargs): |
|
self.utterances = [] |
|
self.params = kwargs |
|
|
|
def add_utterance(self, utterance): |
|
utterance.transcript = weakref.ref(self) |
|
self.utterances.append(utterance) |
|
|
|
def get_idx(self, idx): |
|
if idx >= len(self.utterances): |
|
return None |
|
return self.utterances[idx] |
|
|
|
def get_uid(self, uid): |
|
for utt in self.utterances: |
|
if utt.uid == uid: |
|
return utt |
|
return None |
|
|
|
def length(self): |
|
return len(self.utterances) |
|
|
|
def to_dict(self): |
|
return { |
|
'utterances': [utterance.to_dict() for utterance in self.utterances], |
|
**self.params |
|
} |
|
|
|
def __repr__(self): |
|
return f"Transcript(utterances={self.utterances}, custom_params={self.params})" |
|
|
|
class ElicitingUtterance: |
|
def __init__(self, speaker, text, starttime, endtime, uid=None, transcript=None, prev_utt=None): |
|
self.speaker = speaker |
|
self.text = clean_str_nopunct(text) |
|
self.uid = uid |
|
self.transcript = transcript if transcript else None |
|
self.prev_utt = prev_utt |
|
self.eliciting = None |
|
self.question = None |
|
self.starttime = starttime |
|
self.endtime = endtime |
|
|
|
def __setitem__(self, key, value): |
|
self.__dict__[key] = value |
|
|
|
def get_clean_text(self, remove_punct=False): |
|
if remove_punct: |
|
return clean_str_nopunct(self.text) |
|
return clean_str(self.text) |
|
|
|
def to_dict(self): |
|
return { |
|
'speaker': self.speaker, |
|
'text': self.text, |
|
'uid': self.uid, |
|
'prev_utt': self.prev_utt, |
|
'eliciting': self.eliciting, |
|
'question': self.question, |
|
'starttime': self.starttime, |
|
'endtime': self.endtime, |
|
} |
|
|
|
|
|
def __repr__(self): |
|
return f"Utterance(speaker='{self.speaker}'," \ |
|
f"text='{self.text}', uid={self.uid}, prev_utt={self.prev_utt}, elicting={self.eliciting}, question={self.question}), starttime={self.starttime}, endtime={self.endtime})" |
|
|
|
class ElicitingTranscript: |
|
def __init__(self, utterances: List[ElicitingUtterance], tokenizer=None): |
|
self.tokenizer = tokenizer |
|
self.utterances = [] |
|
prev_utt = "" |
|
prev_utt_teacher = "" |
|
prev_speaker = None |
|
for utterance in utterances: |
|
try: |
|
if 'student' in utterance["speaker"]: |
|
utterance["speaker"] = 'student' |
|
except: |
|
continue |
|
if (prev_speaker == 'tutor') and (utterance["speaker"] == 'student'): |
|
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text) |
|
elif (prev_speaker == 'student') and (utterance["speaker"] == 'tutor'): |
|
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text) |
|
prev_utt_teacher = utterance.text |
|
elif (prev_speaker == 'student') and (utterance["speaker"] == 'student'): |
|
try: |
|
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt_teacher) |
|
except: |
|
print("Error on line 159 of handler.py") |
|
print(utterance) |
|
|
|
else: |
|
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt="") |
|
if utterance.speaker == 'tutor': |
|
prev_utt_teacher = utterance.text |
|
prev_utt = utterance |
|
prev_speaker = utterance.speaker |
|
self.utterances.append(utterance) |
|
|
|
def __len__(self): |
|
return len(self.utterances) |
|
|
|
def __getitem__(self, index): |
|
output = self.tokenizer([(self.utterances[index].prev_utt, self.utterances[index].text)], truncation=True) |
|
output["speaker"] = self.utterances[index].speaker |
|
output["uid"] = self.utterances[index].uid |
|
output["prev_utt"] = self.utterances[index].prev_utt |
|
output["text"] = self.utterances[index].text |
|
return output |
|
|
|
def to_dict(self): |
|
return { |
|
'utterances': [utterance.to_dict() for utterance in self.utterances] |
|
} |
|
|
|
class QuestionModel: |
|
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL): |
|
print("Loading models...") |
|
self.device = device |
|
self.tokenizer = tokenizer |
|
self.input_builder = input_builder |
|
self.max_length = max_length |
|
self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2}) |
|
self.model.to(self.device) |
|
|
|
|
|
def run_inference(self, transcript): |
|
self.model.eval() |
|
with torch.no_grad(): |
|
for i, utt in enumerate(transcript.utterances): |
|
if utt.text is None: |
|
utt.question = None |
|
continue |
|
if "?" in utt.text: |
|
utt.question = 1 |
|
else: |
|
text = utt.get_clean_text(remove_punct=True) |
|
instance = self.input_builder.build_inputs([], text, |
|
max_length=self.max_length, |
|
input_str=True) |
|
output = self.get_prediction(instance) |
|
utt.question = softmax(output["is_question_logits"][0].tolist())[1] |
|
|
|
def get_prediction(self, instance): |
|
instance["attention_mask"] = [[1] * len(instance["input_ids"])] |
|
for key in ["input_ids", "token_type_ids", "attention_mask"]: |
|
instance[key] = torch.tensor(instance[key]).unsqueeze(0) |
|
instance[key].to(self.device) |
|
|
|
output = self.model(input_ids=instance["input_ids"].to(self.device), |
|
attention_mask=instance["attention_mask"].to(self.device), |
|
token_type_ids=instance["token_type_ids"].to(self.device), |
|
return_pooler_output=False) |
|
return output |
|
|
|
class UptakeModel: |
|
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL): |
|
print("Loading models...") |
|
self.device = device |
|
self.tokenizer = tokenizer |
|
self.input_builder = input_builder |
|
self.max_length = max_length |
|
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2}) |
|
self.model.to(self.device) |
|
|
|
def run_inference(self, transcript, min_prev_words, uptake_speaker=None): |
|
self.model.eval() |
|
prev_num_words = 0 |
|
prev_utt = None |
|
with torch.no_grad(): |
|
for i, utt in enumerate(transcript.utterances): |
|
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words): |
|
textA = prev_utt.get_clean_text(remove_punct=False) |
|
textB = utt.get_clean_text(remove_punct=False) |
|
instance = self.input_builder.build_inputs([textA], textB, |
|
max_length=self.max_length, |
|
input_str=True) |
|
output = self.get_prediction(instance) |
|
|
|
utt.uptake = softmax(output["nsp_logits"][0].tolist())[1] |
|
utt.prev_utt = prev_utt.text |
|
prev_num_words = utt.get_num_words() |
|
prev_utt = utt |
|
|
|
def get_prediction(self, instance): |
|
instance["attention_mask"] = [[1] * len(instance["input_ids"])] |
|
for key in ["input_ids", "token_type_ids", "attention_mask"]: |
|
instance[key] = torch.tensor(instance[key]).unsqueeze(0) |
|
instance[key].to(self.device) |
|
|
|
output = self.model(input_ids=instance["input_ids"].to(self.device), |
|
attention_mask=instance["attention_mask"].to(self.device), |
|
token_type_ids=instance["token_type_ids"].to(self.device), |
|
return_pooler_output=False) |
|
return output |
|
|
|
class ElicitingModel: |
|
def __init__(self, device, tokenizer, path=ELICITING_MODEL): |
|
print("Loading teacher models...") |
|
self.device = device |
|
self.tokenizer = tokenizer |
|
self.model = AutoModelForSequenceClassification.from_pretrained(path).to(self.device) |
|
|
|
def run_inference(self, dataset): |
|
current_batch = 0 |
|
batch_size = 64 |
|
|
|
def generator(): |
|
while current_batch < len(dataset): |
|
yield |
|
|
|
for _ in generator(): |
|
|
|
if len(dataset) - current_batch < batch_size: |
|
batch_size = len(dataset) - current_batch |
|
|
|
to_pad = [{"input_ids": example["input_ids"][0], "attention_mask": example["attention_mask"][0]} for example in dataset] |
|
to_pad = to_pad[current_batch:current_batch + batch_size] |
|
batch = self.tokenizer.pad( |
|
to_pad, |
|
padding=True, |
|
max_length=None, |
|
pad_to_multiple_of=None, |
|
return_tensors="pt", |
|
) |
|
inputs = batch["input_ids"].to(self.device) |
|
attention_mask = batch["attention_mask"].to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.model(inputs, attention_mask=attention_mask) |
|
predictions = outputs.logits.argmax(dim=-1).cpu().numpy() |
|
|
|
for i, prediction in enumerate(predictions): |
|
if dataset.utterances[current_batch + i].speaker == 'tutor': |
|
dataset.utterances[current_batch + i]["eliciting"] = prediction |
|
current_batch += batch_size |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
print("Loading models...") |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer) |
|
self.uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder) |
|
self.question_model = QuestionModel(self.device, self.tokenizer, self.input_builder) |
|
self.eliciting_tokenizer = AutoTokenizer.from_pretrained(ELICITING_MODEL) |
|
self.eliciting_model = ElicitingModel(self.device, self.tokenizer, path=ELICITING_MODEL) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `list`): |
|
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`, |
|
`text` and `uid`and can include list of custom properties |
|
parameters (:obj: `dict`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
|
|
utterances = data.pop("inputs", data) |
|
params = data.pop("parameters", None) |
|
|
|
print(params["session_uuid"]) |
|
|
|
|
|
utterances = preprocess_raw_files(utterances, params) |
|
|
|
|
|
num_students_engaged, num_students_engaged_talk_only = compute_student_engagement(utterances) |
|
tutor_talk_time = compute_talk_time(utterances) |
|
|
|
|
|
if params["session_type"] == "eliciting": |
|
|
|
utterances_elicting = preprocess_transcript_for_eliciting(utterances) |
|
eliciting_transcript = ElicitingTranscript(utterances_elicting, tokenizer=self.tokenizer) |
|
self.eliciting_model.run_inference(eliciting_transcript) |
|
|
|
|
|
self.question_model.run_inference(eliciting_transcript) |
|
|
|
transcript_output = eliciting_transcript |
|
else: |
|
uptake_transcript = UptakeTranscript(filename=params.pop("filename", None)) |
|
for utt in utterances: |
|
uptake_transcript.add_utterance(UptakeUtterance(**utt)) |
|
|
|
|
|
self.uptake_model.run_inference(uptake_transcript, min_prev_words=params['uptake_min_num_words'], |
|
uptake_speaker=params.pop("uptake_speaker", None)) |
|
|
|
|
|
self.question_model.run_inference(uptake_transcript) |
|
transcript_output = uptake_transcript |
|
|
|
|
|
model_outputs = post_processing_output_json(transcript_output.to_dict(), params["session_uuid"], params["session_type"]) |
|
|
|
final_output = {} |
|
final_output["metrics"] = {"num_students_engaged": num_students_engaged, |
|
"num_students_engaged_talk_only": num_students_engaged_talk_only, |
|
"tutor_talk_time": tutor_talk_time} |
|
|
|
if len(model_outputs) > 0: |
|
model_outputs = gpt4_filtering_selection(model_outputs, params["session_type"], params["focus_concept"]) |
|
|
|
final_output["model_outputs"] = model_outputs |
|
final_output["event_id"] = params["event_id"] |
|
|
|
import requests |
|
webhooks_url = 'https://schoolhouse.world/api/webhooks/stanford-ai-feedback-highlights' |
|
response = requests.post(webhooks_url, json=final_output) |
|
|
|
print("Post request sent, here is the response: ", response) |
|
|
|
|
|
return final_output |