|
--- |
|
--- |
|
language: ar |
|
widget: |
|
- text: "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ" |
|
- text: "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتابا" |
|
co2_eq_emissions: 404.66986451902227 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- CO2 Emissions (in grams): 404.66986451902227 |
|
## Dataset |
|
We used the APCD dataset cited hereafter for pretraining the model. The dataset has been cleaned and only the main text and the meter columns were kept: |
|
``` |
|
@Article{Yousef2019LearningMetersArabicEnglish-arxiv, |
|
author = {Yousef, Waleed A. and Ibrahime, Omar M. and Madbouly, Taha M. and Mahmoud, |
|
Moustafa A.}, |
|
title = {Learning Meters of Arabic and English Poems With Recurrent Neural Networks: a Step |
|
Forward for Language Understanding and Synthesis}, |
|
journal = {arXiv preprint arXiv:1905.05700}, |
|
year = 2019, |
|
url = {https://github.com/hci-lab/LearningMetersPoems} |
|
} |
|
``` |
|
## Validation Metrics |
|
|
|
- Loss: 0.21315555274486542 |
|
- Accuracy: 0.9493554089595999 |
|
- Macro F1: 0.7537353091512587 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"}' https://api-inference.huggingface.co/models/Yah216/Arabic_poem_meter_3 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) |
|
|
|
inputs = tokenizer("قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |