Visualize in Weights & Biases

vivit-b-16x2-kinetics400-finetuned-cremad

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on CREMA-D dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1824
  • Accuracy: 0.6575
  • F1: 0.6595
  • Recall: 0.6575
  • Precision: 0.6676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 11906

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.54 0.5 5953 1.7615 0.4614 0.4420 0.4614 0.5095
0.7419 1.5 11906 1.1824 0.6575 0.6595 0.6575 0.6676

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Yassmen/vivit-b-16x2-kinetics400-finetuned-cremad

Finetuned
(49)
this model