metadata
library_name: transformers
language:
- my
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- openai-whisper-burmese
metrics:
- wer
model-index:
- name: Whisper Small My - Ye Bhone Lin
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: openai-whisper-SLR
type: openai-whisper-burmese
args: 'config: my, split: test'
metrics:
- name: Wer
type: wer
value: 78.27149522328372
Whisper Small My - Ye Bhone Lin
This model is a fine-tuned version of openai/whisper-small on the openai-whisper-SLR dataset. It achieves the following results on the evaluation set:
- Loss: 0.2066
- Wer: 78.2715
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0386 | 7.8740 | 1000 | 0.1604 | 94.4679 |
0.0006 | 15.7480 | 2000 | 0.2066 | 78.2715 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0