|
|
|
使用[Firefly](https://github.com/yangjianxin1/Firefly)项目微调baichuan-13b-base。训练数据约为一百万多轮对话数据,包括项目分享的moss数据+2万条school math数据。 |
|
|
|
更多详情见项目:[Firefly](https://github.com/yangjianxin1/Firefly) |
|
|
|
技术细节分享:[Firefly增强Baichuan-13B的多轮对话能力](https://mp.weixin.qq.com/s/djO8Tg3emmy6wzw_rTUlcw) |
|
|
|
训练loss: |
|
|
|
[//]: # (<img src="https://huggingface.co/YeungNLP/firefly-baichuan-13b/resolve/main/firefly-baichuan-13b-loss.jpg" width="450">) |
|
![firefly_logo](firefly-baichuan-13b-loss.jpg) |
|
|
|
|
|
C-Eval榜单: |
|
|
|
| Model | C-Eval | STEM | Social Science | Humanities | Other | |
|
|----------------------------------|--------|-------|----------------|------------|-------| |
|
| Baichuan-13B-Chat(官方) | 52.05 | 42.23 | 65.27 | 58.61 | 51.32 | |
|
| **firefly-baichuan-13b** | 51.36 | 44.24 | 61.65 | 54.63 | 51.68 | |
|
| chatglm2-6b(官方) | 50.45 | 41.91 | 60.73 | 59.24 | 47.82 | |
|
| **firefly-chatglm2-6b** | 49.13 | 43.6 | 58.83 | 54.48 | 45.03 | |
|
| openbuddy-llama2-13b-v11.1-bf16 | 43.36 | 39.79 | 50.28 | 44.78 | 42.13 | |
|
| chinese-alpaca-2-13b(哈工大) | 41.86 | 36.52 | 49.7 | 47.97 | 38.33 | |
|
| openbuddy-llama2-13b-v8.1-fp16 | 41.62 | 38.82 | 44.66 | 40.28 | 45.32 | |
|
| chinese-alpaca-2-7b(哈工大) | 41.48 | 35.01 | 50.08 | 43.02 | 43.87 | |
|
| belle-llama2-13B-chat-0.4M | 41.11 | 40.04 | 44.71 | 42.09 | 38.82 | |
|
| ziya-llama-13b | 39.1 | - | - | - | - | |
|
| llama-2-13b-chat(官方) | 36.38 | 33.68 | 46.38 | 34.47 | 34.1 | |
|
| lama-2-7b-chat(官方) | 35.86 | 32.85 | 40.04 | 37.37 | 36.01 | |
|
| flagalpha/Llama2-Chinese-7b-Chat | 34.54 | 35.21 | 37.9 | 33.11 | 31.7 | |
|
| yayi-13b-llama2 | 34.15 | 36.48 | 30.64 | 32.67 | 34.6 | |
|
| yayi-7b-llama2 | 30.18 | 25.88 | 38.23 | 34.56 | 26.31 | |
|
| linly-llama2-7b | 28.35 | 26.06 | 33.47 | 29.71 | 26.53 | |
|
| linly-llama2-13b | 27.86 | 27.67 | 26.95 | 27.93 | 28.95 | |
|
|
|
|
|
单轮对话: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
""" |
|
单轮对话,不具有对话历史的记忆功能 |
|
""" |
|
|
|
|
|
def main(): |
|
model_name = 'YeungNLP/firefly-baichuan-13b' |
|
|
|
max_new_tokens = 500 |
|
top_p = 0.9 |
|
temperature = 0.35 |
|
repetition_penalty = 1.0 |
|
device = 'cuda' |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
# llama不支持fast |
|
use_fast=False if model.config.model_type == 'llama' else True |
|
) |
|
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|> |
|
if tokenizer.__class__.__name__ == 'QWenTokenizer': |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
tokenizer.bos_token_id = tokenizer.eod_id |
|
tokenizer.eos_token_id = tokenizer.eod_id |
|
|
|
text = input('User:') |
|
while True: |
|
text = text.strip() |
|
# chatglm使用官方的数据组织格式 |
|
if model.config.model_type == 'chatglm': |
|
text = '[Round 1]\n\n问:{}\n\n答:'.format(text) |
|
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device) |
|
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id |
|
else: |
|
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device) |
|
bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(device) |
|
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(device) |
|
input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, |
|
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
outputs = outputs.tolist()[0][len(input_ids[0]):] |
|
response = tokenizer.decode(outputs) |
|
response = response.strip().replace(tokenizer.eos_token, "").strip() |
|
print("Firefly:{}".format(response)) |
|
text = input('User:') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|
|
|
|
多轮对话: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
def main(): |
|
model_name = 'YeungNLP/firefly-baichuan-13b' |
|
|
|
device = 'cuda' |
|
max_new_tokens = 500 # 每轮对话最多生成多少个token |
|
history_max_len = 1000 # 模型记忆的最大token长度 |
|
top_p = 0.9 |
|
temperature = 0.35 |
|
repetition_penalty = 1.0 |
|
|
|
# 加载模型 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
# llama不支持fast |
|
use_fast=False if model.config.model_type == 'llama' else True |
|
) |
|
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|> |
|
if tokenizer.__class__.__name__ == 'QWenTokenizer': |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
tokenizer.bos_token_id = tokenizer.eod_id |
|
tokenizer.eos_token_id = tokenizer.eod_id |
|
|
|
# 记录所有历史记录 |
|
if model.config.model_type != 'chatglm': |
|
history_token_ids = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long) |
|
else: |
|
history_token_ids = torch.tensor([[]], dtype=torch.long) |
|
|
|
# 开始对话 |
|
utterance_id = 0 # 记录当前是第几轮对话,为了契合chatglm的数据组织格式 |
|
user_input = input('User:') |
|
while True: |
|
utterance_id += 1 |
|
# chatglm使用官方的数据组织格式 |
|
if model.config.model_type == 'chatglm': |
|
user_input = '[Round {}]\n\n问:{}\n\n答:'.format(utterance_id, user_input) |
|
user_input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids |
|
# firefly的数据组织格式 |
|
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id |
|
else: |
|
input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids |
|
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long) |
|
user_input_ids = torch.concat([input_ids, eos_token_id], dim=1) |
|
history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1) |
|
model_input_ids = history_token_ids[:, -history_max_len:].to(device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, |
|
temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id |
|
) |
|
model_input_ids_len = model_input_ids.size(1) |
|
response_ids = outputs[:, model_input_ids_len:] |
|
history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1) |
|
response = tokenizer.batch_decode(response_ids) |
|
print("Firefly:" + response[0].strip().replace(tokenizer.eos_token, "")) |
|
user_input = input('User:') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|