File size: 30,089 Bytes
7bc5c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The two patent families both expire in the United States in 2029.
  sentences:
  - What method is used to record amortization and costs for owned content that is
    predominantly monetized on an individual basis?
  - What year do the patent families related to DARZALEX expire in the United States?
  - What was the primary reason for the net cash used in investing activities in 2022?
- source_sentence: In October 2020, Fortis Advisors LLC filed a complaint against
    Ethicon Inc. and others in Delaware's Court of Chancery. The lawsuit alleges breach
    of contract and fraud related to Ethicon's acquisition of Auris Health Inc. in
    2019. The case underwent a partial dismissal in December 2021, and as of January
    2024, the trial's decision is pending.
  sentences:
  - What types of payment rates are used for dialysis treatments and associated pharmaceuticals?
  - What legal claims does Fortis Advisors LLC allege against Ethicon Inc. in the
    lawsuit related to the acquisition of Auris Health Inc.?
  - What were the key components of the acquisition deal between ICE and Black Knight
    completed on September 5, 2023?
- source_sentence: Net cash provided by operating activities was $712.2 million and
    $223.7 million for the year ended December 31, 2023 and 2022, respectively. The
    increase was primarily driven by timing of payments to vendors and timing of the
    receipt of payments from our customers, as well as an increase in interest income.
  sentences:
  - What caused the increase in net cash provided by operating activities between
    2022 and 2023?
  - How long did Joanne D. Smith serve as the Vice President - Marketing at Delta?
  - How does the management experience of Mr. Robert G. Goldstein benefit the company?
- source_sentence: We believe that, to varying degrees, our trademarks, trade names,
    copyrights, proprietary processes, trade secrets, trade dress, domain names and
    similar intellectual property add significant value to our business
  sentences:
  - What were the net interest expense on pre-acquisition-related debt and the cost
    associated with the extinguishment of senior notes for 2022 as part of non-GAAP
    adjustments?
  - How did the fluctuation in foreign currency exchange rates impact the consolidated
    net operating revenues in 2023?
  - What does the company believe adds significant value to its business regarding
    intellectual property?
- source_sentence: The consolidated financial statements are incorporated by reference
    in the Annual Report on Form 10-K, indicating they are treated as part of the
    document for legal and reporting purposes.
  sentences:
  - What does it mean for financial statements to be incorporated by reference?
  - What is contained within the pages 163-309 of the financial section?
  - What were the key business segments of The Goldman Sachs Group, Inc. as reported
    in their 2023 financial disclosures?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7014285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8271428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8714285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9028571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7014285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2757142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17428571428571427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09028571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7014285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8271428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8714285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9028571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8043195367351605
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7724552154195008
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7766441682397275
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8685714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9042857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17371428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09042857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8685714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9042857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.804097602951568
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.771829365079365
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7756860707173107
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8214285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8557142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.89
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27380952380952384
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17114285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08899999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8214285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8557142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.89
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7977242461477416
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7678412698412698
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7726663884946474
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6785714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8257142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8528571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8857142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6785714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2752380952380953
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17057142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08857142857142856
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6785714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8257142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8528571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8857142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7864311013349103
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.754115079365079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7585731100549844
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6642857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7828571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8157142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8642857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6642857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26095238095238094
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16314285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08642857142857142
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6642857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7828571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8157142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8642857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7634746514041137
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7313633786848066
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7360563668571922
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Yohhei/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The consolidated financial statements are incorporated by reference in the Annual Report on Form 10-K, indicating they are treated as part of the document for legal and reporting purposes.',
    'What does it mean for financial statements to be incorporated by reference?',
    'What is contained within the pages 163-309 of the financial section?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7014     |
| cosine_accuracy@3   | 0.8271     |
| cosine_accuracy@5   | 0.8714     |
| cosine_accuracy@10  | 0.9029     |
| cosine_precision@1  | 0.7014     |
| cosine_precision@3  | 0.2757     |
| cosine_precision@5  | 0.1743     |
| cosine_precision@10 | 0.0903     |
| cosine_recall@1     | 0.7014     |
| cosine_recall@3     | 0.8271     |
| cosine_recall@5     | 0.8714     |
| cosine_recall@10    | 0.9029     |
| cosine_ndcg@10      | 0.8043     |
| cosine_mrr@10       | 0.7725     |
| **cosine_map@100**  | **0.7766** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7        |
| cosine_accuracy@3   | 0.8329     |
| cosine_accuracy@5   | 0.8686     |
| cosine_accuracy@10  | 0.9043     |
| cosine_precision@1  | 0.7        |
| cosine_precision@3  | 0.2776     |
| cosine_precision@5  | 0.1737     |
| cosine_precision@10 | 0.0904     |
| cosine_recall@1     | 0.7        |
| cosine_recall@3     | 0.8329     |
| cosine_recall@5     | 0.8686     |
| cosine_recall@10    | 0.9043     |
| cosine_ndcg@10      | 0.8041     |
| cosine_mrr@10       | 0.7718     |
| **cosine_map@100**  | **0.7757** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7        |
| cosine_accuracy@3   | 0.8214     |
| cosine_accuracy@5   | 0.8557     |
| cosine_accuracy@10  | 0.89       |
| cosine_precision@1  | 0.7        |
| cosine_precision@3  | 0.2738     |
| cosine_precision@5  | 0.1711     |
| cosine_precision@10 | 0.089      |
| cosine_recall@1     | 0.7        |
| cosine_recall@3     | 0.8214     |
| cosine_recall@5     | 0.8557     |
| cosine_recall@10    | 0.89       |
| cosine_ndcg@10      | 0.7977     |
| cosine_mrr@10       | 0.7678     |
| **cosine_map@100**  | **0.7727** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6786     |
| cosine_accuracy@3   | 0.8257     |
| cosine_accuracy@5   | 0.8529     |
| cosine_accuracy@10  | 0.8857     |
| cosine_precision@1  | 0.6786     |
| cosine_precision@3  | 0.2752     |
| cosine_precision@5  | 0.1706     |
| cosine_precision@10 | 0.0886     |
| cosine_recall@1     | 0.6786     |
| cosine_recall@3     | 0.8257     |
| cosine_recall@5     | 0.8529     |
| cosine_recall@10    | 0.8857     |
| cosine_ndcg@10      | 0.7864     |
| cosine_mrr@10       | 0.7541     |
| **cosine_map@100**  | **0.7586** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6643     |
| cosine_accuracy@3   | 0.7829     |
| cosine_accuracy@5   | 0.8157     |
| cosine_accuracy@10  | 0.8643     |
| cosine_precision@1  | 0.6643     |
| cosine_precision@3  | 0.261      |
| cosine_precision@5  | 0.1631     |
| cosine_precision@10 | 0.0864     |
| cosine_recall@1     | 0.6643     |
| cosine_recall@3     | 0.7829     |
| cosine_recall@5     | 0.8157     |
| cosine_recall@10    | 0.8643     |
| cosine_ndcg@10      | 0.7635     |
| cosine_mrr@10       | 0.7314     |
| **cosine_map@100**  | **0.7361** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 45.16 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.44 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                      | anchor                                                                                                                                             |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Highlights during fiscal year 2023 include the following: We generated $18,085 million of cash from operations.</code>                                                                                                                                                                                                                  | <code>What was the amount of cash generated from operations by the company in fiscal year 2023?</code>                                             |
  | <code>U.S. government and agency securities | $ | 7,950 | | $ | (336 | ) | $ | 45,273 | $ | (3,534 | ) | $ | 53,223 | $ | (3,870 | )</code>                                                                                                                                                                                                   | <code>How much were unrealized losses on U.S. government and agency securities for those held for 12 months or greater as of June 30, 2023?</code> |
  | <code>For assets under development, assets are grouped and assessed for impairment by estimating the undiscounted cash flows, which include remaining construction costs, over the asset's remaining useful life. If cash flows do not exceed the carrying amount, impairment based on fair value versus carrying value is considered.</code> | <code>How is the impairment of assets assessed for projects still under development?</code>                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5313        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7416                 | 0.7521                 | 0.7554                 | 0.7079                | 0.7609                 |
| 1.6244     | 20     | 0.6553        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7549                 | 0.7693                 | 0.7732                 | 0.7318                | 0.7716                 |
| 2.4365     | 30     | 0.445         | -                      | -                      | -                      | -                     | -                      |
| 2.9239     | 36     | -             | 0.7565                 | 0.7738                 | 0.7746                 | 0.7367                | 0.7763                 |
| 3.2487     | 40     | 0.3917        | -                      | -                      | -                      | -                     | -                      |
| **3.8985** | **48** | **-**         | **0.7586**             | **0.7727**             | **0.7757**             | **0.7361**            | **0.7766**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->