Edit model card

llama-code

This model is a fine-tuned version of decapoda-research/llama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float32

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 1234
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.8108 0.36 50 1.7893
1.6505 0.71 100 1.5672

Framework versions

  • PEFT 0.6.0.dev0
  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .