llama321B_SA / README.md
YousraC's picture
Model save
8ea2f70 verified
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama321B_SA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/xaiarabic/llama321B_SA/runs/zr3y6pef)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/xaiarabic/llama321B_SA/runs/zr3y6pef)
# llama321B_SA
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.14.1.dev0
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0