KangalKhan-RawRuby-7B

I suggest using ChatML (Use whatever system prompt you like, this is just an example!):

<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
Hello, what are you?<|im_end|>
<|im_start|>assistant
I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|>

Q4_K_S GGUF:
https://huggingface.co/Yuma42/KangalKhan-RawRuby-7B-GGUF

More GGUF variants by mradermacher:
WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF weighted/imatrix GGUF by mradermacher:
https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-i1-GGUF

KangalKhan-RawRuby-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: Yuma42/KangalKhan-Ruby-7B-Fixed
        layer_range: [0, 32]
      - model: Yuma42/KangalKhan-RawEmerald-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: Yuma42/KangalKhan-Ruby-7B-Fixed
parameters:
  t:
    - filter: self_attn
      value: [0.1, 0.55, 0.35, 0.75, 0.97]
    - filter: mlp
      value: [0.9, 0.45, 0.65, 0.25, 0.03]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Yuma42/KangalKhan-RawRuby-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.95
AI2 Reasoning Challenge (25-Shot) 66.89
HellaSwag (10-Shot) 85.53
MMLU (5-Shot) 63.46
TruthfulQA (0-shot) 57.09
Winogrande (5-shot) 78.69
GSM8k (5-shot) 62.02

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 20.38
IFEval (0-Shot) 54.77
BBH (3-Shot) 26.39
MATH Lvl 5 (4-Shot) 5.97
GPQA (0-shot) 5.03
MuSR (0-shot) 7.64
MMLU-PRO (5-shot) 22.48
Downloads last month
147
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Yuma42/KangalKhan-RawRuby-7B

Evaluation results